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NON PARAMETRIC CLASSIFICATION USING LEARNING

VECTOR QUANTIZATION

Chapter 0

Introduction

A common problem in signal processing is the problem of signal classification. In

radar signal processing, it is the problem of determining the presence or absence of

a target in the reflected signal. In adaptive control, it is the problem of determining

the operating environment in order to use the appropriate gain in a gain scheduling

algorithm. In both cases, a signal processor must be designed which correctly

classifies a new observation based on past observations.

Loosely speaking, the general problem consists in extracting the necessary in-

formation in order to build a classifier which identifies each new observation with

the lowest possible error, given past observations. As such, a classifier is nothing

more than a partition of the observation space into disjoint regions: observations

falling in the same region are declared to originate from the same pattern.

There are basically two approaches for solving this problem. The first one,

referred to as the parametric approach, consists in using the past data to build

a model and then using it in the classification scheme. The second approach,

referred to as the nonpaxainetric approach, consists in using the past data directly

in the classification scheme. In the first approach, a statistical model is postulated

a priori and its parameters are determined by minimizing a cost function which

depends on the observation data and the assumed model. The success of the

resulting classifier depends crucially on the nature of the assumed model, the

characteristics of the cost function, and the accuracy of the parameters of the

optimal model. Usually, simplifying assumptions are made on the model and the

cost (e.g. Gaussian model and quadratic cost) in order to find an optimal solution.

Maniscni)i, eppr ved June 13, 19Q0.
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Hence, a compromise exists between model accuracy and problem solvability.

In the second approach, a scheme is devised that uses past data directly in

the classification scheme. New observations are classified by cuinputing a suitable

quantity which depends on the observation and comparing that quantity to similar

ones computed from past observations. These tests are computed directly, without

the intermediate step of identifying a statistical model. Among these tests are

the nearest neighbor scheme, the kernel method, the histogram method, and the

Learning Vector Quantization (LVQ) method. These tests do not assume any

model form for the underlying problem. Consequently, they are not subject to the

kinds of errors associated with assuming an incorrect model.

In this dissertation we prove several properties of the nonparametric classifica-

tion scheme known as the LVQ method. The LVQ method, subsequently referred

to as LVQ, originated in the neural network community and was introduced by

Kohonen (Kohonen [19861). Despite the considerable interest it has generated in

the research community, most of the work related to LVQ is confined to pure sim-

ulations. Although this is a natural and important first step in the development of

LVQ, we feel that an investigation of the theoretical underpinnings of the method

is warranted. Our goal is to examine LVQ, both theoretically and experimentally,

and determine its performance as a nonparametric classifier. More specifically, the

following contributions are made:

9 We prove the convergence of the parameter adjustment rule in LVQ under

reasonable assumptions.

* We introduce a modification to LVQ which results in convergence in more

cases.

* We show by means of simulation results that LVQ has a better overall per-

formance than other classifiers.

* We show that the classification error associated with LVQ can be made

asymptotically optimal in a sense to be specified later.

The main tools used to carry out this program originated from stochastic approx-

imation. A judicious casting of LVQ as a stochastic approximation algorithm,
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provides the general framework used throughout this dissertation to study LVQ.

In Chapter 1, we present a review of statistical classification schemes, nonpara-

metric detection and vector quantization. In addition, a new result related to the

convergence of a density estimate constructed from a vector quantizer is presented.

In Chapter 2, we review some stochastic approximation results that are perti-

nent to the present work.

In Chapter 3, the LVQ algorithm is presented. Using theorems from Chapter 2,
we prove that the update algorithm converges under suitable conditions. We prove

that the detection error associated with LVQ converges to the lowest possible error

as the appropriate parameters go to infinity. We also discuss a modification to the

algorithm which provides convergence for a larger set of initial conditions. Finally,

we discuss how this method can be used with the various risks commonly found in

classification.

In Chapter 4, we present several simulation results. Three types of classifiers are

constructed and their classification performances compared against LVQ for two

distinct sets of simulations. The first set involves the discrimination between two

Gaussian distributed patterns and the second involves the discrimination between

Rayleigh versus lognormal distributed patterns. Throughout the simulations, the

LVQ algorithm is computed for several different values for its parameters.

In Chapter 5, we conclude with a discussion of implementation issues for LVQ

and future directions for this work. In addition, we discuss how this method could

be used in connection with other types of observation data.

3



Chapter 1

Nonparametric Detection

In this chapter we review classification theory, nonparametric density estimation

and vector quantization. We present several definitions and results which will be

used throughout this dissertation.

1.1 Statistical Pattern Recognition

The material presented in this section is covered in standard texts on statistical

pattern recognition (e.g. (Fukunaga [19721)). It is reviewed here to set the notation

and to show how the underlying statistical models strongly effect the optimal

classifier.

In order to simplify the notation and better illustrate the notions behind sta-

tistical pattern recognition, we consider the case of two patterns. In this case,

we are given two probability density functions pl(x) and P2(x) with observations

from the first pattern distributed according to the density pi(x) and those from

the second pattern distributed according to the density p2(x). If the prior proba-

bilities of occurrence of the patterns are known, then a classifier can be designed

using the Bayesian approach. Otherwise, the classifier can be designed using the

Neyman-Pearson method.

A classifier takes an observation as input and determines which pattern was

observed. Thus, the classifier can be represented by two disjoint sets {S 1 , S2}. The

observations that fall in set S are declared to be from pattern 1, those which fall

in set S2 are declared to be from pattern 2.
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In general, the classifier can make two types of errors in performing its task.

It can declare pattern 2 when in fact, pattern 1 was observed or it can dec!are

pattern 1 when pattern 2 was observed. Classifiers typically make errors when the

pattern probabilities overlap, i.e., when there is a positive probability of finding

either pattern in a particular region. The goal of optimal classification is to mini-

mize the errors of misclassification. In order to control these errors, different cost

functions may be used. We will discuss three methods for designing classifiers: (1)

Bayes' decision rule for minimum error, (2) Bayes' decision rule for minimum risk,

and (3) the Neyman-Pearson test.

1.1.1 Bayes' Decision Rule for Minimum Error

As its name suggests, this rule is used when a classifier having the smallest possible

probability of error is sought. To be precise, let 7r, (resp. 7r2 ) denote the prior

probability that pattern 1 (resp. 2) is observed. Given a classifier S = {Si, S 2},
the probability of error is

r,(S) = J1 P2(x) 7r2 dx + <p(x)7rd1.1)

= 7r, + ( 2(x)7r2 -PI(x)7 1 ) dX. (1.2)

This cost is clearly minimized when all points for which the integrand is positive

are declared to be members of the region 5 2 . The resulting optimal decision regions

are thus defined by'

S2 = {XIP 2(X)7r2 -p,()7r >0} (1.3)

S, = d\S2. (1.4)

were Rd denotes d-dimensional Euclidean space.

1.1.2 Bayes' Decision Rule for Minimum Risk

Suppose that with each decision there is an associated cost C(b, H), for deciding

6 when pattern H is true. Let the cost be given by

C(6,H) = Cj, if d = i, H = j, ij E {1,2}. (1.5)

'Note that we can arbitrarily assigned points on the boundary to the region S 1.
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Here, we assume that it costs less to make a correct decision than it does to make

an incorrect one, i.e., we assume that C, < C,,, j $ i. The Bayesian optimal

minimum risk rule seeks to minimize the average cost or the expected risk

r2 (S) = E(C(6,H)) (1.6)

= C1 P(5 = 1,H = 1) + C21 P(6 = 2,H = 1) (1.7)

+C 12 P(6 = l,H = 2) + C 22 P(6 = 2, H = 2). (1.8)

An application of Bayes rule yields

r 2(S) = C11 P(6 1 I H1 ) 7ri + C 21 P(6 2 I HI) 7ri (1.9)

+C 12 P(61 j H2 ) 72 + C22 P(62 I H2 ) r2. (1.10)

Suppose {S1, S 2} are given. Then

P(6, I Hj) = s pj(x)dx. (1.11)

Since Q = S 2 U S, and S2 n S1 =, we have

L2 px dx=1- 1 pixdx, i =1,2. (1.12)

Therefore,

r 2(S) = C 217r1 +C 22r 2  (1.13)

+ S1 {7r 2 (C1 - C 22)P 2(x) - 7rl (C21 - C1 1 )p 1 (x)} dx. (1.14)

Again, the decision regions are chosen so as to minimize the integral. This is

accomplished by choosing {S,, 52} as

S2 = {IP 2(X) 72 -YPI(X) 71 >0} (1.15)

S, = Rd\s2 (1.16)

where -y := (C21 - C1 ,)/(C1 2 - C22 ). Observe that it is without loss in generality

to assume that C,, = 0 in the search for S*.
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1.1.3 Neyman-Pearson Test

In the Neyman-Pearson test, the observations are assigned to regions which depend

on the pattern probabilities explicitly. There are two types of errors made in

deciding which pattern is true. The first error, el, occurs in deciding pattern 2

when pattern 1 is true. The second error, E2 , occurs in deciding pattern 1 when

pattern 2 is true. If pattern 2 is interpreted as "target", and pattern 1 as "no

target", then the first error is known as a false alarm and the second error is

known as a miss. These errors can be explicitly calculated from

= 4 p(x) dx

E2 = jS p 2(x)dx. (1.18)

The Neyman-Pearson test seeks to minimize C2 subject to c1 being equal to

some constant, say 0. This is a constrained optimization problem so the decision

rule is found by minimizing

r 3 (S) = E2 + A( 1 - 3) (1.19)

where p is the Lagrange multiplier. Using (1.17)-(1.18) yields

r3(S) = IP2(x)dx+ p(Lpl(x)dx- ) (1.20)

= p (1 - )) + j(s,(p 2( ) - pI()) dX. (1.21)

Proceeding as before, we see that the optimal decision regions are given by

S 2 = {xIP(x)- 9p1(X) > 0} (1.22)

S, = Rd \S2. (1.23)

We note that these three different decision strategies lead to similar definitions

of the decision regions. Indeed, in all three cases

S2 = {x Ip2(x)- tpI(x) > 0} (1.24)

for some appropriately chosen t. In the case of the minimum probability of error,

t is chosen as 7r,/7r 2 when 7 2 $ 0; in the case of minimum Bayes risk, t is chosen

7



as yr I/7r2 ; in the case K. Neyman-Pearson test, t is chosen so that the probability

of false alarm equals 3.

Throughout the remaining sections, the term Bayes' risk will refer to one of the

costs above, either ri(S), r2(S), or r3(S). The precise cost will be specified when

needed.

If the underlying densities are unknown then the previous methods for statis-

tical pattern recognition are obviously not applicable. However, estimates of the

pattern densities can be formed based on the past observations. Therefore, in the

next section we discuss the effect on the Bayes' risk in using estimated densities as

if they were the actual densities. It will be shown that if the estimated densities

converge in the appropriate sense to the true densities, then the resulting estimated

risk converges to the ti ue optimal risk.

1.2 Bayes' Risk Consistent Density Estimators

In this section we discuss Bayes' risk consistency of density estimators. Consistency

is the property of convergence of an estimated value to the true value as some

paramete, goes to infinity. We present several definitions of consistency which

are used throughout this dissertation. We then present a fundamental theorem

about Bayes risk consistency from (Glick [19721). This theorem shows that if an

appropriate density estimator is used in any of the classification schemes above

then the resulting estimated optimal risk converges to the true optimal risk.

1.2.1 Definitions of Consistency

Let xl,...,XN be independent observations distributed according to p(x). By

P(x; \N) we denote a density estimate of p(x) which is based on the N observa-

tions. Let Ep denote the expectation with respect to the density p. The following

definitions will be used throughout this dissertation.

The mean square error and mean integrated squared error of P(x; N) at x under

the density p are respectively

EI3(x; N) - p(x)](1.25)

8



and

Ep f0P(x; N) - p(x)]2 dx = L Ep( (x; N) - p(x)J2 dx. (1.26)

A sequence of density estimates is consistent in quadratic mean if for every x

lim Epf(x; N) - p(x)] 2 = 0. (1.27)
N-co

Likewise, a sequence of density estimates is integratedly consistent in quadratic

mean if for every x

lir E,[fi(x; N) - p(X)] 2dx = 0. (1.28)
N-oo -00

A sequence of density estimates is weakly consistent if, for every x

lir (x; N) = p(x) in probability. (1.29)

Finally, a sequence of density estimators is strongly consistent if

lir (x; N) = p(x) P-a.s. (1.30)

Notice that in all of the above definitions the estimate (x; N) may not itself be

a density function, i.e., f.!:_ (x; N) dx need not equal 1 for any finite N. In fact,

the integral may not exist at all. The lack of this property can result in density

estimates which are not Bayes' risk consistent.

1.2.2 Convergence for Bayes Risk

We now consider the error associated in using the estimated densities as if they were

the true densities. In this case, we consider the Bayes risk for minimum probability

of error. The results hold equally well for all the risks discussed previously. In this

problem we are given independent observations. For the case of two patterns, the

four quantities to be estimated are rl, 7r2 , p1(z), and p2(x). The observed data

consists of the set ZN = {z3}=l where zj is the random vector z, = (xj,di),

such that for d4, = i, x3 is an independent vector distributed according to pi(x),

i= 1,2.

The Bayes risk for minimum probability of error is given by

rj(S) = L p1 (x)7r, dx + j p 2(x)7r 2 dx. (1.31)

9



with S = {S, S;} given by

S; = {xIp 2 (x)r 2 - pl(x)7r, > 0 (1.32)

ST = R' \ S ; .  (1.33)

Given a new observation xN+l the goal is to infer the value of dN+z based on

the past observations Z. Let Ali denote the number of observations in Z for which

d,, = i. Suppose that the past observations are used to estimate both the a priori

probabilities and the conditional probabilities. The a priori probabilities can be

estimated by i,(N) = Ni/N and the conditional densities can be estimated by one

of the methods to be discussed in Section 1.3. Let P}(x; N), i = 1,2, denote the

estimated conditional probabilities. These estimates can be used to construct an

estimate of the Bayes risk given by

fi (S; N) = s, P(x; N)*1 (N) dx + s P2 (x; N)r 2 (N) dx. (1.34)

Here we assume that the integrals exist. As before, this integral is minimized by

S"(N) where

S (N) = {xIP2 (x;N)fr2(N) -3(x;N)fr(N) > o} (1.35)

S,'(N) = d \;. (1.36)

The main result from (Glick [1972, Theorem B]) is that if the estimates of the

densities and the estimates of the priors converge and if all of the estimates are

consistent then the associated estimated Bayes risk is also consistent. In other

words, the risk associated with the estimated densities approaches the optimal

risk. We have the following result.

Theorem 1.2.1 (Glick [1972]) Let h(x; N) and P, (x; N) be strongly consistent

density estimates. If they are also densities for each N, then the sample-based risk

f I(S; N) converges a.s. to the true risk r1 (S), uniformly over the domain of all

classification rules. Suppose further that

f{h(x;N)fr2(N) + ,(x;N)fri(N)} dx-. 1, a.s. (1.37)

then

sup Ifi(S; N) - ri(S)l - 0, a.s. (1.38)
S

10



Moreover, the theorem remains valid if all of the above convergences are replaced

by convergence in probability.

Proof: For any classification rule S,

0 < I l I (S) - r1(S)1 (1.39)

< I Ifu i - pi (x)7r I dx+,I P2(X)*2 -p 2(X) 7r2 dx (1.40)

:_ fl ,(f)i -p,( Wr, Idx + I. P2()r2 -P2(X) 721 dx (1.41)

Next, we show that the integrals

fn i/(x)fr, - pix) rIl dz -- 0, i =1, 2, as

The assumptions

-* ir; and Pi(x) - p,(x), i = 1,2, a.s. (1.43)

imply that

pi(x) - pi(x) 7'i a.s. (1.44)

Since

0 'S A (x) 5 _P I (X) f1 + P2(x) 2 (1.45)

and

L{ 2 + P(x) dx a.s. (1.46)

the desired convergence follows from a variation of the Lebesgue bounded conver-

gence theorem (Pratt [19601). 0

This theorem shows that for large N, a detector can be built using the estimated

densities instead of the actual densities. In addition, the estimated risk is close to

the risk of the optimal detector. In the next section we show several techniques

for generating consistent density estimators from past observations.

1.3 Nonparametric Density Estimation

We have shown that if a suitable approximation to the underlying densities is

known, then a classifier that performs well compared to the optimal classifier can be

11



constructed. In Section 1.2 we showed that if these estimates converge to the true

densities, then the corresponding risk converges to the true risk. In this section,

three methods for density estimation are presented along with a discussion of

their strengths and weaknesses. They are histogram estimation, nearest neighbor

estimation, and kernel estimation. Throughout the discussion, we assume that

the training data consist of N independent, identically distributed observations

X1,.. . , X from density p(x). The book (Silverman [19861) provides an excellent

introduction to this material.

1.3.1 Histogram Method of Density Estimation

The histogram method is perhaps the oldest and most basic approach to density

estimation. The simplest histogram estimator, referred to as a simple histogram,

is characterized by an origin Yo and a bin width h. Its regions are the intervals

[Yo + mh, Yo + (m + 1)h) with m = 1,..., M. The density estimate is given by

j5(x;N) = { Number of xi in same bin as x } . (1.47)

This is a special case of a more general form of a histogram density estimator.

In general, any density estimator which is constant on connected regions is a his-

togram density estimator. More complex histograms have bins which have variable

shape. Simple histograms play an important role in the analysis of univariate data.

However, they are of little value for multidimensional data since the number of bins

increases exponentially as the dimension increases.

Simple histogram estimators are sensitive to the location of the origin Yo, i.e.,

shifting yo can result in very different looking histograms. This sensitivity to

origin location has led to the development of other density estimation techniques.

However, in the context of classification, histograms are still valuable.

One way to get around the problem of origin placement is to construct variable

width histograms. In general, the histogram density estimate is given by

1 { Number of x, in same bin as x }
1 (x; N) = x { Width of bin containing x (1.48)

In order to better account for the data, it is possible to let the bins depend on the

observations. This results in random partition histograms which have bins that

12



are constructed directly from the data. Specifically, let Yi,..., YN be the order

statistics of xj.... xN, i.e. Y is the smallest x,, Y is the next smallest, etc... Let

Y0i = -oo and YN+j = oo. Suppose kN is a sequence of positive integers satisfying

lim log N = 0  and lim 0  (1.49)

N- kN N--0 N

For example, kN = Iv'N]j satisfies (1.49). Define

JN = {O, 1,kN + 1,2kN+ + 1,3kN + 1,...} (1.50)

and

AN(x) = max{aIa EJ, Y 0< x} (1.51)

BN(x) = min{N,AN(x)+kN}. (1.52)

Let

P(x;N) K(A,B) (1.53)N (YB - YA)1.3

be a density estimator where [ YA, YB ) is the semi-open interval containing x and

K(A, B) represents the number of observations in that interval (usually K(A, B)

equals kN). The symbols A and B are abbreviations for AN(x) and BN(x), respec-

tively. This estimator has been studied in (Van Ryzin [19731) where it was shown

that under appropriate conditions, it is consistent. This result is presented next.

Lemma 1.3.1 (Van Ryzin [1973, Corollary 2]): If the sequence {kN} satisfies

(1.-49) and if x E C(p), where C(p) is the set of points where p(x) is continuous,

then iP(x; N) is a strongly consistent estimator for p(x).

More general histograms are used when the observation dimension is large
because of exponential growth problems associated with the simple histogram

method. There are two conflicting goals. The first is to have enough bins to
obtain some detailed information for the density estimate and the second is to

have the required number of observations be low. Since it is generally believed

that the number of estimated parameters should be much smaller than the num-

ber of observations (Duda & Hart [19731), it is easy to see that a simple histogram

would require a very large amount of data in order the achieve reasonable accuracy

for observations in several dimensions.
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In order to alleviate this problem, general histograms have regions which are

adapted to the data. This allows the use of connected regions instead of simple

bins. Adjusting the regions helps get better accuracy and keeps the number of

regions down thus requiring a small number of observations.

1.3.2 Nearest Neighbor Density Estimation

The k-nearest neighbors method is a nonparametric detection scheme in its own

right. We show that this approach can be used to form a nonparametric density

estimator. This notion of density estimator is dual to the histogram method.

Indeed, the idea is to find the smallest hypersphere centered on x which contains

k points instead of finding the number of points in a fixed region.

To describe this density estimation scheme in detail, let p(x, y) denote a metric

measuring the distance between x and y. The k-nearest neighbors of x are the k

closest points to x in the metric p. Let Pk represent the distance between x and

the kth closest point and define N'k(x) to be the k-nearest neighborhood of x, i.e.,

'k(x) = { ylp(Xy) < Pk}. (1.54)

The k-nearest neighbor density estimate of p(x) which is usually credited to (Lofts-

gaarden & Quesenberry [1965]), but was first proposed in (Fix & Hodges [1951])

and is given by k

i5(x;N)-= NVol(Ark(x)). (1.55)

If we let k depend on the sample size N then a strongly consistent density

estimate can be formed. Thus we have

Lemma 1.3.2 (Rao [1983, Theorem 3.2.21) Let p(x) be continuous at x and let

{kN } be a sequence of integers satisfying lim(kv/N) = 0, and lim(kN/loglog(N)) =

oo. Then P(x; N) is strongly consistent.

1.3.3 Kernel Density Estimation

Another method for density estimation is the kernel density estimator. The idea

behind kernel density estimation is that each observation point xi is replaced by
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a function which depends on xi. The density estimate is obtained by summing up

the values of these functions. This technique is widely used for low dimensional

problems since it has many desirable features. We now describe how a kernel

estimator can be built up from a "naive estimator".

To begin with, consider that one method for estimating the density would be to

form the so-called "naive estimator". This estimate is formed by first calculating

the empirical distribution function P(x; N) and then estimating the density by the

central difference operation

P(x + hN; N) -P(x - h;N) (1.56)

(x;N) =2hN.

where h. tends to zero as N goes to infinity.

The estimate can be written in a more general form. Define the weight function

{ if IxI < 1
0 otherwise.

The naive estimator is given by

,P(x; N) v E=, -Xi (1.58)

The estimate is constructed by centering boxes of height (2Nhv) - ' and width

2hN around each observation and summing them up. We note that 5(x; N) is

itself a density function since f tib(x) dx = 1. The regularity of this estimate is

controlled by hN. If we consider the behavior of this estimate as hN goes from zero

to some small number, we first see that the estimate consists of delta functions

located at the observation points which then expand to include neighbors of the

observations. Eventually, the boxes of neighboring observations overlap completely

and the density estimate loses all detail.

This adjustable characteristic exists in all of the density estimation schemes

mentioned so far. In the k-nearest neighbors estimates, the adjustable parameter

was k, the number of neighbors of x. In the simple histogram, it was the bin width.

Finally, in this method, it is the parameter hN.

The function ti' is just a specific example of a class of functions which can be

used to create consistent density estimators. Let w(.) be a function satisfying the

conditions below
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a) w(.) is a density on R,

b) xIj dw(x) = 0, and

c) supc, w(x) < 0.

The function w(.) is called a kernel function and

P(xN) d 1 V NX (1.59)

is the resulting kernel density estimate.

Under the appropriate conditions, j3(x; N) is a strongly consistent density esti-

mator (Cacoullos [19661). Specifically, we have the following:

Lemma 1.3.3 (Rao [1983, Theorem 3.1.5]) Suppose that w(.) satisfies condi-

tions (a)-(c), limhN = 0 and lim(Nh ) = oo. In addition suppose that for

all a > 0
00

E exp(-a N hN) < 00. (1.60)
N=I

Then 5(x; N) is strongly consistent. Note that (1.60) is true if lim(N hN / log N) =

00.

1.3.4 Comparisons of Density Estimators

We have seen that the density plays a critical role in the construction of the

optimal classifier, and that if a consistent density estimator were found which

was itself a density, then the associated estimated Bayes risk converged to the

optimal Bayes risk. Here we discuss the advantages and disadvantages of the

various density estimation schemes and the feasibility of using these schemes to

construct a nonparametric classifier.

Note that in the construction of the actual nonparametric classifier it is not

necessary to explicitly calculate the density estimator. The amount of computation

required could be prohibitive, even in the scalar case. The abstraction of the

consistent density estimator was merely a device employed to conveniently prove

the appropriate behavior of the resulting classification schemes.
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Kernel density estimates are themselves densities and require the storage of

all the observations and N evaluations of the kernel function for each estimate,

therefore they can be computationally expensive.

Nearest neighbor density estimates are not themselves densities because the

estimates of the tails do not decay fast enough, therefore they are not Bayes' risk

consistent. This means that it is not possible for the nearest neighbor classifier to

reach the Bayes' optimal risk. As with Kernel estimates, they require the storage

of all of the observations.

Histogram density estimates do not require the storage of all of the observations.

They only require the storage of the description of the bins. For simple histograms,

the number of bins grows exponentially with the dimension of the observation

space. In higher dimensions, connected regions should be used instead of uniform

bins because of the high number of simple bins required and hence the high amount

of observation data required for each bin.

From the implementation point of view, some of these estimates have the draw-
back that they require the storage of a large number of parameters. We seek a

method for reducing the amount of data stored while controlling the associated

error. This can be accomplished by a data reduction scheme such as Vector Quan-

tization.

1.4 Vector Quantization

In this section we briefly discuss vector quantization and show how it can be

used for density approximation. Vector quantization is commonly used for data

compression. It consists of taking a continuous random vector and replacing it by

a discrete approximation. The approximation will necessarily result in an error

and the goal is to pick the approximation so that the expected error is minimized.

More specifically, let X be a d-dimensional random vector described by the

probability density function p(x). Let D C Rd be such that P(X E D) = 1.

A k-level quantizer Q = {e, V} consists of: (i) a reproduction alphabet E =

{Gi,...,6&}; (ii) apartition V = {V,...,Vk of D; and (iii) amapping Q : D -

defined by Q(x) = Gi if x E V.
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An error or cost metric, p(O, x), is incurred for reproducing x as 0. The cost

p(O, x) satisfies the following two conditions:

a) p(O, x) is a twice continuously differentiable function of 0 and x and for every

fixed x E W it is a convex function of 0.

b) For any fixed x, if 0 -* oo, then p(O, x) -. oo.

The following are examples of cost functions satisfying these requirements which

are commonly used in vector quantization:

(i) Let 11 I1 be a norm and g be a nonconstant convex function on [0, co) with

g(O) = 0,

p( --X) g(IIx - o1). (1.61)

(ii) Let R(x) be a positive definite matrix depending on x,

p(O, x) = (x - O)T R(:r)(x - 0). (1.62)

This cost function is known as the Itakura-Saito distortion measure.

Let p(O, x) satisfy (a)-(b), then the average error associated with the quantizer

{E, V} is given by

J(E, V) = E(p(Q(x),x)) (1.63)

_J p(Oi,x) p(x) dx. (1.64)

A quantizer {EO, V*} is said to be optimal for J(E, V), with respect to the density

p(x), if
J(O-, V-) <__ J(), V ) (1.65)

for all other quantizers {, V}.

There are two standard results relating the reproduction alphabet e to the

partition V. Let V, = {X E DIp(6i, x) < p(0j, x), j 0 i} with equidistant points

being assigned to the region with the lowest index. Ve9 is called a Voronoi cell and

the collection {Ve, } is called a Dirichlet partition of D (Gray [1984]).
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Property 1 Given a reproduction alphabet 9 = {01 ... ,Ok), the partition V9 -

{ Ve, .. , V } has an error which is less than or equal to that of any other partition

V.

Property 2 Let cent(Vi) be the generalized centroid of Vi. It is defined by

cent(V,) = argminJ p(O,x) p(x)dx. (1.66)OED v

Given a partition V = {Vi, ... Vk} the reproduction alphabet 6 = {cent(V )}k has

an error which is less than or equal to that of any other reproduction alphabet E).

The above properties can be used to construct an algorithm which finds a

sequence of partitions which successively lower the error (1.64). The algorithm

alternates between finding a partition, V(n + 1), which is optimal for the current

reproduction alphabet, E(n), and then finding a reproduction alphabet, G(n + 2),

which is optimal for the current partition, V(n + 1). Here n is the iteration number

for the algorithm. It has been shown (Linde, Buzo & Gray [1980]) that at each

step the error is decreased and that in the limit as n goes to infinity the algorithm

converges to a local optimum of J(1, V). This algorithm is known as the Linde-

Buzo-Gray (LBG) algorithm.

In view of the Properties 1-2, the function J(E, V) can be considered a function

of E only. Hence we can write J(E) = J(1, Ve) with Vo = {V,, ... I Ve. In

addition, we represent the optimal vector quantizer as E® with the understanding

that the corresponding optimal partition is given by Ve..

Unfortunately, the density is not usually available; instead one has independent

samples xl,..., xN distributed according to p(x) from which to estimate the cost

in (1.64). This leads to considering an approximate average error given by

1 N kJ(E); N) = y F, E p(Oi,,xj) 1lf _jv#,) (1.67)
j=l i----

where 1{Al denotes the indicator function of the set A. A local minimum to (1.67)

can also be found with the LBG algorithm by using sample averages instead of

expectations.
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It is possible to construct a density estimate from the E;9, which minimizes

J(e;N). This density estimate is a general histogram estimator with convex,

random connected regions. Let E) be fixed and suppose z E V.(NV) for some '.

Then

= NVol(V()) { Number of xi in region V0:(N)} (1.68)

N

Z, 1{ZEVe!(N)}
= (1.69)

N Vol(Ve.(N))

is a density estimate for p(x). In the sections below, we show that this estimate is

weakly consistent.

1.4.1 Convergence of the Estimated Cost

Let e = {01,. .. ,} and consider
k

J(e) p(Ot, x) p(x) dx. (1.70)

We want to find EY which minimizes J(e). It can be shown that there exists e),
a countable set with k = oo, such that J(00) = 0, the lowest possible cost.

We recall the strong law of large numbers (SLLN) and the weak law of large

numbers (WLLN), respectively below.

Theorem 1.4.1 (Billingsley [1979, p250]) Suppose {Y} is a sequence of indepen-

dent, zero mean random variables and suppose Ej VarY]/j 2 < oo then I = -"

0 almost surely.

Theorem 1.4.2 (Billingsley /1979, p252]) Suppose that for each n, (P,,P.)
is a probability space and that Y(n),..., Y.. (n) are independent random variables.

Let S(n) = -;'- Y(n) and let E[Y(n) = mi(n), Var[Yj(n)l = a?(n). Define

ES(n)] = m(n) = mj(n) Va[S,] =, o2(n) -= o'(n). (1.71)
j=1 j=1

If for each n, v(n) > 0 is such that a(n)/v(n)--. 0, then

Pn [IS(n) - m(n) 0 (1.72)
v(0n
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for all positive C.

Next we show that for k fixed, J(E; N) - J(O) with probability one. Let

k k

= "p(0i,xj)l1f,,v,,} V p(,,x)p(x)dx. (1.73)
j=1 = i

Then E[Y] = 0 and

Var[Y,] = E[Y121 (1.74)
k

< E[(Zp(9i,x,) I{Erv)) 21  (1.75)

=1

k

= E[ p2(o,, x,) 1{EJ (1.77)

k

-: 1 P2(,,x)p(x)dx < oc. (1.78)

Hence J(E; N) - J(O) follows from (SLLN).

Now, we are interested in exploring the value of the optimal cost when k is

also allowed to go to infinity. First we consider a simple case. Let kNV = N then if

Oi = xi, we see that J(e; N) = 0 for all N and the optimal cost is reached.

Next, we consider another choice for kN ztnd 1(N) which results in an asymp-

totically optimal cost, i.e., i(eN; N) --- 0 in probability as N - cc. To this end,

we assume that p(x) is continuous, with compact support D.

Let kN satisfy (1) lim(kv/N) = 0 and (2) limN kv = cc. Suppose that GN is

chosen so that the Voronoi cells form a "roughly" uniform partition of the domain

D, i.e.,
1 k

Vol(V,(N)) = O('-) with D = U V,(N). (1.79)
s=1

Letting Y(N) be defined by (1.73) , we have

kMr

Var[Yj(N)] = P2(Oj(N),x)p(x)dx (1.80)

kM

- ZPi(V(N))p 2(Oi(N),ci)p(c,) (1.81)

for ci E V,(N) by MVT

21



L 
"kx L max p'(2,( ),c,)p(c,) (1.82)

kN s=1,... kN

< L max p2(O,(N),cj)p(c,) (1.83)

<L. (1.84)

where L is some constant. This follows since p(x) and p(O, x) are continuous and

D is compact. Therefore, _Y-(N) < NL. Let v(N) = N and apply (WLLN) to

get

J(EN; N) 0 in probability as N -. o (1.85)

1.4.2 Relation to the Global Optimal Quantizer

For each N, let EO be a global minimum of J(O; N). From (1.85) and the property

of the global minimum, we know that

0 < J(EO ;N) < J(N; N) --,0 (1.86)

in probability, therefore j(%~; N) - 0. It follows that

Vol(V9.(N)) - 0. (1.87)

Suppose not. Let 8'(N) be such that Vol(Vo(N)) -. C > 0 then

E[J(%; N) _ E[- Zv{V,:(N,}] (1.88)

= I, p(O(N),x)p(x)dx 7-0 . (1.89)

We have the following.

Theorem 1.4.3 Let EO be an optimal vector quantizer for the problem (1.67).

Let P(x; N) be the generalized histogram estimator constructed from Ve. defined ill

(1.69). Then for each x E Ve.(N), fi(x; N) is a weakly consistent density estimator

of p(z).

Proof: Apply (WLLN) with Y1 = l{(,v,../Vol(Ve,) ard v(N) = N. a
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1.5 Remarks

In this chapter we discussed the classification problem, nonparametric detection

and vector quantization. We demonstrated that a consistent nonparametric de-

tector can be built from a consistent nonparametric density estimator. We pre-

sented vector quantization and showed that it can be used to construct a consistent

density estimate. In the next chapter, we review several results from stochastic

approximation.
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Chapter 2

Review of Stochastic
Approximation

In this chapter we present a review of some stochastic approximation techniques

together with results on their convergence. Stochastic approximation has a long

history beginning with the work of (Robbins & Monro [1951]). In the sections be-

low, we closely follow the presentation in (Benveniste, Metivier & Priouret [1987]).

This presentation is particularly clear. The results on convergence of stochastic

approximation will be used in subsequent chapters to show convergence of the LVQ

algorithm.

2.1 The Heuristic Idea behind the ODE Method

Stochastic approximation consists of an iterative scheme for determining the crit-

ical points of a function by using random observations of that function. It is

common to many recursive adaptive estimation schemes. The convergence of the

parameters can be obtained by examining the stable equilibria of an ODE which

is related to the update equation. In this section we give an informal presentation

of stochastic approximation and indicate the method of proof for the theorems to

follow.

The equation

e).+ = + a.+iH(e.,X.+) (2.1)

is a stochastic approximation algorithm. The term stochastic refers to the fact
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that for each n, X+j is an instance of a random variable. We assume that there

exists a family, (pse), of probability distributions where Ae(dx) is the conditional

probability density of X,,+ given 1. That is, we assume that conditioned on 19,

X.+, is independent of {X, k < n}. Let {a, },>o be a sequence of nonincreasing

positive numbers and let

h(O) : H(E, x) e(dx). (2.2)

The study of the convergence of (2.1) is accomplished through relating E) to the

solution O(t) of the equation

dO(t)d = h(O(t)). (2.3)

This equation is called the ordinary differential equation associated to (2.1). Let

8.(t) denote the solution of (2.3) (if it exists) with initial condition EO(O) = a.

The algorithm (2.1) can be viewed as a random perturbation of (2.3). To this

end, set

:= H(e,z) - h(e). (2.4)

Let F ' denote the sigma algebra generated by {EO0,... ,,,Xo,... ,X-}. The

process defined by

M. "ak (ek-.,Xk) (2.5)
k<n

Mo =0 (2.6)

is a martingale. This follows from the fact that

E[M,, - M,-- 1 7.- 1] = a,,E[(E._,, X.)IY,,-] = 0. (2.7)

Equation (2.1) can therefore be written as

E,,+, = 0,, + a.+h(eO.) + A.M (2.8)

where

A.M := M. - M.-. (2.9)
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If we introduce the following definitions:

TI

t. , to := 0 (2.10)
i--I

e(t) =e)" if t,, < t < t,+, (2.11)

m(t) := max{n :t, < t} (2.12)
M(t)

a(t) := k -t, t). (2.13)
k=1

Then, (2.8) becomes

e(t) = 0 + Z f h(e(s))ds + A AkM, (2.14)
O~k~lm(t ) "fti-- O<k<ml(t)

= e0 + / h(e(s))ds + R(t) + M(t) (2.15)

where

R(t) := - h(e(s))ds (2.16)

and

M(t) := Ak mM. (2.17)
O<k<m(t)

Hence we see that (2.1) can be viewed as a random perturbation of (2.3) with

R + M being the perturbation.

The study of the convergence of equation (2.1) consists in comparing the behav-

ior of e, to the behavior of ;(t) when both start from the same initial condition.

Two convergence results will be presented in this chapter.

The first result is that if G" is a locally stable point of (2.3) then, with high

probability, e, will come to visit a neighborhood of C" and will stay there an

interval of time which is related to the size of a. More precisely, assume that

G0 = a and 0.(0) = a. Then for every finite T and 7 > 0

lim P isup e,, - 6.(t,)I > 7) 0. (2.18)all 10 (t,. <T

This result is proved in Section 2.3.

The second result involves the convergence of e, to an asymptotically stable

equilibrium of (2.3). If 0" is an asymptotically stable equilibrium of (2.3), with
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domain of attraction D(e"), and if en visits a compact subset of D(O") infinitely

often, then en converges to (;" with probability one. This result is proved in

Section 2.4, and is referred to as a Ljung-type result.

In the next section we give a detailed description of the stochastic approxima-

tion algorithm considered in this chapter.

2.2 Detailed Description of the Algorithm

Let {on, Xn}n>0 be a sequence of random variables defined on a probability space

(Q2, A, P), with values in D C Wd and S C Rk, respectively. It is assumed that the

conditional probability of Xn+ given .J, = a(X0, ... -n, A 0, ... , Es,) is expressed

by fle.(X,;dx,+. ) where for each 0 E D, fle(x, dx') is a transition probability

matrix from S into S.

The general stochastic approximation model to be considered can be written

as
2

E)+, = 0,, + a,.+, H(e,,,X.+,) + an.+1 On+l (o,,X+l) (2.19)

where H(E, x) is a given "adaptation function" mapping D x S into D and en is

a given function mapping D x S into D.

The following hypotheses are assumed:

[H.1] {akj} is a nonincreasing sequence of positive reals such that Fn an = D0.

[H.2] There exists a family {1le : e E W} of transition probabilities from k x

into R' such that, for every Borel subset A of 3?

P(Xn+l E AIYn) = rle. (A,X.). (2.20)

Observe that this implies

E [g(e,,, AT, 41) I f g(O,, X) 12e. (dx, Xn) (2.21)

for every Borel measurable, positive g(E, x) such that Ejg(En, X,+)I < oo. The

equation (2.21) implies that the random variable f g(On(w),x)f10(,,) (dx, X,(w))

is a version of the conditional expectation of g(En, X,,+) given .,, that is to say,

given the values taken by the variables (k and Xk for k < n.
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From hypothesis [H.21 we see that {E,,X,,} ,>0 is a Markov process. Its tran-

sition probability depends on n through a, and p,,. If a, = a constant and p,, = o

then it is independent of n.

The following notation will be used throughout this chapter.

a) Pz,a denotes the probability distribution of {e,,Xn}I>o for the initial condi-

tions X 0 = x, e0 = a, and E,. denotes the expectation with respect to

Pz,.•

b) Let e(t) be defined by

E(t) = l{t,<<t,..,.} 9k (2.22)
k>O

where 1{A} denotes the indicator function of the set A. We call e(t) the

continuous process associated with the sequence { G}.

The study of the behavior of e(t) between t,, and t, +T reduces to the study

Of Ek for n < k < m(n,T) where

m(n, T) := inf {k : k > n, an+1 ... + ak+1 _ TI. (2.23)

In the case where t, = 0, the notation is simplified to

m(T) := m(O,T). (2.24)

c) For every function f(19, x) on R x Rk, fe denotes the application x -- f(E), x).

In particular, let r1e fe denote the function

-. J f(E, y) fle(dy, x). (2.25)

d) For every compact Q C D and every e > 0 we set

r(Q) = inf(n; E). 0 Q) (2.26)

a(e) = inf(n: - n-l > E) (2.27)

v(CQ) = min(r(Q),a(e)) (2.28)

In what follows, D is an open subset of Rd. The functions H and e, are assumed

to satisfy the following additional hypotheses:
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[H.3] For every compact Q C D, there exist constants C1 , C2, qj, q2 (depending

on Q) such that for every e E Q and all n

(i) IH(E,x)l _< CI(1 + Ixl'1)

(ii) 10.(e,x)l 1_ C2(1 + IxlO).

[H.4] There exist a function h on D, and for each G E D, a function ve(.) on

such that

(i) h is locally Lipschitz on D

(ii) (I - rie)ve = He - h(O) for every 19 E D. In the vector case, this

means that for every coordinate i = 1,..., d,

(I - lie) ve = Hie - h,(E9) (2.29)

(iii) For every compact Q C D, there exist constants C3 , C4, q3, q4, K E

[1/2, 1] such that for every e, 6 E Q

fve(x)f _ C3(1 + fxI,) (2.30)

Ile ve(x) - r1, v§(x)l _ c410 - 61 (1 + 1xj4). (2.31)

The ODE associated with (2.19) is (2.3) with the function h(.) defined in [H.4].

For example, if we assume that for each fixed (9, the transition matrix H1e is

positive recurrent (see for example (Revuz (1975])) with invariant probability re

and if

h(8) = J Ho(y) re(dy), (2.32)

then the function He(.) - h(O) is zero mean with respect to re and the solution

ve of the equation (H.4.i.i), called Poisson's equation, is expressed as

ve(x) = nI(He - h(e)) (x) (2.33)
k>O

provided the series is convergent. In applications, re is usually expressed in the

form

J g(x) re(dx) = lim 1i g(x) (2.34)

for a set of functions g which is dense in the space of continuous functions.
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One of the following two hypotheses on moments of F,, can be verified in most

applications.

[H.5] For every compact Q C D and all q > 0, there exist a finite constant

M(q, Q) < o such that for every n E Rk, a E D

E.,a[1{ekEQ,k<n} (1 + JXn+1 1')] :5 M(q,Q) (1 + I-j q) (2.35)

Condition [H.51 is however, too strong to be true for a general linear dynamical

system. Instead the following hypothesis will hold in that case.

[H'.5] For every compact Q in D and q > 1 there exist positive constants E0 and

M such that for all E < E0 , a E Q and for all x

sup E.,[IX q 1{n<(,,Q)}] :_ M(1 + jXjq). (2.36)

For example, [H'.51 is satisfied when {X,, } is a sequence of independent observations

distributed according to a probability density function p(x) which is continuous.

2.3 Convergence in Probability of the Paths

In this section we prove convergence in probability of the paths of E) to G(t). We

have

Theorem 2.3.1 Assume that [H.1]-[H'.5] hold and that a1  _ 1. Let Q be a

compact subset of D, T > 0, a E Q, such that e,(t) E Q for all t E [0, T]. Then

for every 6 > 0 and all x
lim P ', ( sup [0. - G.(t) > 6) = 0. (2.37)

CO \n<m(T)

Furthermore, let Q2 D Q, be two compact subsets of D. Let T > 0, such that for

alla EQ1, alit <T,

d(O.(t), Qc) 2! 6o > 0. (2.38)
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Then there exist constants B 1 , L2 , sI, such that for all 6 < 60, a E Q1, q > qo(A)

and all x

P,. sup ;E~n - e(tn)I 2: (.9
rn~(T) /

B 1  ,(T)
< 9 (1 + (xi") (1 + T)9-' exp(qL2T) E (2.40)

k=1

Proof:

Let

G.+1 = On + a.+ 1 h(en) + Cn (2.41)

= et + a.+ H(EO,X.I+l) + a.+l +1 (0.,X.+I) (2.42)

hence

Cn = Qn+[H(E.,Xn+) - h(e.) + a.+, Qn+I (G.,X +)]. (2.43)

A basic ingredient in the proof of Theorem 2.3.1 is the inequality in Proposition I
below. For a function 4) mapping R into R, with bounded continuous second

order derivatives, set

C,(f, = I(e+i) - 4,(e.) - an+I 4D'(e,)h(en) (2.44)

Proposition 1 Under the hypotheses of Theorem 2.3.1, there exist constants B

and s such that for all E < o, T > 0, Xo = x, a E Q

r k-I
Ea sup l{k<.EQ) I Z Ej(4))1 (2.45)

Ln<k<m(n,T) i=n
m(n,T)

-B(1 + T)q-'l + IxI-) E a'^1€/ (2.46)

Proof: (see (Benveniste, Metivier & Priouret [1987]) )

Proof of Theorem 2.3.1 (continued):

Let us now consider Qi, Q2, T and 60 as in (2.38). This condition implies that

for every 6 < 60 the "tube of diameter 6" around the solution E)(t), for t < T is
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included in Q2. As a consequence of fH.4] there exist constants L, = L, MQ), L2 =

L2(Q2) such that

Ih(E)Ij : L, Ih(E)) - h(E)')I 5 L 2 IE) - E', for all 9, e' E Q2. (2.47)

Then for all t,, with t,+ < T

E.t+ - G.(t.) = h(O.(s)) ds = a,+ h(ea(tn,)) + YXn (2.48)

with

[volI a2.+1L 2. (2.49)

Applying (2.46) to the coordinate functions 4I~i(O) = e,, for some constants B and

s, we have

E.,. U l1.5.v(C,Q)} 1 :Ek] (2.50)
In:Sm(T)(T)

< ~ +II' 1 ~q1m()aZ +/ (2.51)
k=1

Then

er- Ga(tr) = e 1- 0.(t,-,.) + a,(h(er....) - h(Ga(tv...i) + E,..I + 7r-i. (2.52)

Therefore

r-I r-i v-I

E), - Ga(tr) = aL.+I(h(E&k) - h(e0 (tk)) + 1: Ek + 1: 7k, (2.53)
k=O k=O k=O

v-I -I v-i

1er - e0 (tr)I L2  ak~ & ke - OG(tk)l + I F, -kj + L2 F, a2+1 . (2.54)
k-Ok=O k=O

For all win the set {w n <v(w) Am(T)} and for r =0,1,..n

v-I

le.- ea(t,)l :5 L2 E ak~lIEk - e.(tk)I (2.55)
k=O

+ Sup{ 1{m<&)a1 E + L2, a Q (2.56)
vn:na(T) k l k?
v-I

L F,2 a k+l lek - G.)(tA,)j + UI + U2. (2.57)
k=O
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An elementary computation shows that if

V, < rl , i v,-I + r2  (2.58)
*=1

for ri, r2, ai _ 0 and r = 0, ... , n, then
n

v, < r2 exp(rl aj). (2.59)
i=1

Using this for w in the set {w n < ui(w) } implies

SUP Ie. - G.(t.)lq < 2 q exp(q L2 T)(Uf + Uq). (2.60)
n<v

According to Proposition 1

m(T)

E[U'] < B(l + T)q-l (1 + IXI) a I1 +q/ 2  (2.61)
k=1

H6lder's inequality yields that for any ai 2_ 0, bi E R, u > 1,0 < 6 < 1

a,{,-1 Jb- u (2.62)l a,b,l" _< ( ,cu/ i) a$1  Ib,l". (.2
i1=f

Applying this we obtain

U qmT) 2 q <q -1m(T) q

U L 2 _ L2T -  a (2.63)
1= 1  k=1

and therefore

E., [SUP 1e -( atn1 (2.64)
Ln__vAm(T)

,n(T)<A2(1 + lxl'2) (1 + T)q- ' exp(q L2 T) al+q12.  (2.65)

k=1

Now for 6 < 6o set

Q(6) = { sup iJE - 0.(t)I 2! 6} (2.66)
n<m(T)

and write

fl(b) C {sup le. - G(t.)_6;m(T) v {z < m(T)}. (2.67)
In.<m(T)
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At time n = 'r(Q 2), IE, - 6e(t,)I > 6, hence we have

{r < a,r < m(T)} CI sup Ie.-e.(t.)I > } (2.68)
In:LIAM(T)

and therefore

Q (b) c{sup 119"- ea(t) 2: b} U { < r,o < rn(T)}. (2.69)

The theorem follows from (2.65) and Lemma 2.3.1 below.

Lemma 2.3.1 For every compact Q C D and q > 2, there exist constants M and

s, such that, for every T > 0, all e < Eo, all a E Q and all x

m(T)

Pa{a(e) _ r(Q),a(E) < m(T)} _< M(1 + IxIs) a k. (2.70)
k= I

Proof:

We have

P(a<r,a<m) = P({a=k} <r) (2.71)
k=1

= Z P({a = k} 11r,ek -e > E) (2.72)
k= 1

W P(k< [aAr}, CIQk(+lXl")
k1 +c2 a.(1 + IXkI 9') > e) (2.73)

Using H.3 we obtain

E Z P(k < a ̂ r, C'ak(1 + IXkjs) > E) (2.74)
k=1

<k- a' E[(1 + lXkl')' l{k<A,}] (2.75)
k=

In

< M(1 + I=1") a aq (2.76)
k= 1

where the last inequality follows from H.5.
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2.4 Ljung-Type Convergence

In this section we are interested in the asymptotic behavior of {e,,} when n -, oo.

For each N, consider the "tail-algorithm"

n+1 = 0' + av+.+ Hef',X 1 ) + an V) (2.77)

with initial conditions

EoN = x, XoN = a. (2.78)

Two observations can immediately be made:

1) The law P. of {G)} n>N+1 for the initial condition E6' = x, X = a is the

conditional law of {E}k>N given XN = x, EN = a.

2) Let the continuous process associated with {en'}n 0 be

NV+n N+n+l

EN(t) = E6v for t, such that aZ :, t < , (2.79)
i=N+I i---N+I

It follows from Section 2.3 that if aN j. 0 when N --, o, for each T and 6 > 0

lira P (sup I N(t) - O(t) 6 0 (2.80)
N-0e =0(2t<80

where e.(t) is the solution of equation (2.3) with the initial condition E6(O) =

a.

This asymptotic approximation of the tail of the algorithm by the deterministic

function 0.(t) and the estimates of the previous section can be used to derive the

asymptotic properties of the sequence {Gn} when equation (2.3) is assumed to

have locally asymptotic stable equilibrium EY (or stable equilibria).

When several locally asymptotic stable equilibria exist, the situation is more

complicated. This leads to the statement that, given (reN, XN,) = (a, x), the

probability of convergence of the algorithm to the attractor of (a, x) tends to 1

when N - oo. A set of special conditions must be imposed in order to obtain

boundedness and convergence of the algorithm.

Recall that if 6" E D is an asymptotically stable point for the equation (2.3)

with domain of attraction D, then the solution of (2.3) with initial condition
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a E D stays in D and converges to 0" when t - oc. It is then possible to show

(see (Krasovskii [1963, Th.5.3. p.31]) the existence of a C2 function U on D (a

Lyapunov function) such that

(i) U(G') = 0; U(G) > 0 for all 6 E D G '

(ii) U'(e)h(e) < 0 for all ; E D 6 # 0*

(iii) U(G) - oc if 0 --- o9D or 161 - o.

We shall consider a slightly more general situation where the domain of ittrac-

tion can be a compact set F C D and therefore introduce the following hypotheses

[H.6] Assume that a,, as in (H.1] and

na < > 1 (2.81)
i>0

[H.7] There exists a positive function U on D, which is twice continuously differ-

entiable, such that U(9) - C < c if e - D or 10i -, +oo and U(1) < C

if G E D. Moreover,

U'(e)h(O) < 0 for all E) E D. (2.82)

Let

K(c) = {: U(G) !_ c} (2.83)

;(c) = r(K(c)) - inf(n : On 0 K(c)) (2.84)

v(c) = inf(n: e,, E K(c)) (2.85)

qo(A) = sup(2,2(A - 1)) (2.86)

and consider a compact set F C D such that

F = {: U(Es) _< co}. (2.87)

Hypothesis [H.7] is true if F = o}, c = 0 and D is the domain of attraction of
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Theorem 2.4.1 Assume [H. i]-[H. 7] hold, and assume F is a compact set satis-

fying (2.87). Then for every compact Q C D and q >_ qo(,\) there exist constants

B and s such that for all N > 0, a E Q and all x
00

P,,,{(e, )>o tends to F _ 1 - B(l + I't) E (2.88)
k=N+l

Proof: (see Section 2.5)

The following classical form of the "convergence theorem" for stochastic algo-

rithms can be deduced from this theorem. This type of theorem has been popu-

larized by the classical works (Kushner & Clark [1978]) and (Ljung [1977]).

Theorem 2.4.2 Assume [H. i]-[H. 7] hold, and assume e- is a locally asymptoti-

cally stable equilibrium of ODE with domain of attraction D. Let Q be a compact

subset of D and Y a positive finite R. V. Define

Q(Q, Y) = {w : for infinitely many n, e,(w) E Q and Eln(W)i :_ Y(w)} (2.89)

Then en(w) converges to e a.s. for w E II(Q,Y).

Proof:

Let

A := {w : Gn(w) converges to e} (2.90)

and

Sim = {w :E(w) E 0 infinitely often and IJE(w)l < m}. (2.91)

Clearly f2,,, increases to fI(Q,Y) when m -- oo. We define tk := inf{n > tk-I :

E, E Q and Ie.I 5 m} with to := 0. By construction, the sequence {tkl is strictly

increasing and the tk are finite on Sm. Moreover for w in {w : tk(W) < oo}, the

set A is invariant by the time translation tk(W). The Markov property of (E), Xn)

implies

P(A fl ,) < lim P(AC n (tk < o)) (2.92)

" lim E[ lt,,<o.P.h,,e, (AC)] (2.93)

nim B4(1 + ImI') a -,+q/ 2  (2.94)
-k-*o i=k+l

=0. (2.95)
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Therefore,

0 < P(Aefo) < P(A n S1,,)=o. (2.96)
M=1

2.5 Proof of Theorem 2.4.1

The proof of Theorem 2.4.1 relies on the following four lemmas. From the definition

of E,(D) in equation (2.44), we see that

Lemma 2.5.1 Under the hypotheses of Proposition 1,. the following inequalities

hold for some constants B and S > 0:

r k- I 1
(i) Es,. sup sup l{k.S(Q)}I E E1('?)jf (2.97)

n n<k m( n,T) imr

<3qB(1 + T),-l(1 + lx) +2(2.98)
i>1

(ii) If E>c I '1 2 < oo, then on {(e, Q) = +oo} (2.99)
k-I

lim sup E Ei(f)[ = 0 P,,. - a.s. (2.100)
n-On<k-mtn,T)_ i= n

Proof:

We see that

k-I k-I

sup l{k<,,} Z E,($) = sup E Ei(k) (2.101)
n<k<tm(n,T) i n n<k<vAm i=

k-I

< sup E I(i + I < v)ej((). (2.102)
n<k<m i-n

Set

Zi = 11i+1<5,} Ci(f) (2.103)

and define recursively n, := m(n,._., T) with no := 0. For n E [n,, n,+1

k-I k-I n-I

Z' _ - .Zi if k E [n,,n,+,] (2.104)
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and
ad k-I n,+I-I k-I n-I

z= z - Iz. if k [r,,n,+, (2.105)
i=11 "=,,- i= .+I ifl.

From this we derive ( -I
sup.>., sup 1k<n1 , Ei(I) ) (2.106)- n<k<m(n,T) -i=n

k-I

< 3 q SUP SUP 1{k<nJl E E,()Iq.  (2.107)
r_>p n2 <k<n+a i=n,

Statement (i) follows from this inequality and from Proposition 1 since

Fk-I
E sup sup 1{k<,j }1 Ei(-flj (2.108)L rUO n,<k<n, i i fn,

E ZE sup 1{k<n)1 E ,()lq  (2.109)
r>o [n<k<nr+, i=n,

B(1 + T)q-I(1 + IlXI) Z -1+9/2. (2.110)
r>0 "=nr

The property (ii) follows equally since the inequality

k-I

E SUP l{k<n}l F E&(@) q < 00 (2.111)
[E n,<k<ntr.€i i=n

implies
k-I

lir sup E e(4)Il = 0 a.s. on {v = +oo}. (2.112)
r- co r<k<n+l ---- r

Lemma 2.5.2 Given cI, c2, q such that co < c, < c2 < C and q qo(A) ( A in

[H.6J) , there exst -o, B2, s 2 such that for E < E0,a E K(cj) and x:

PZ(r(c2) < oo, a(e) > r(c 2)) < B2 (1 + q/) 2  (2.113)
k>1

(For the definition of r(c) see (2.84) and of a(e) see (2.27))
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Proof:

Let -0 be given from hypothesis [H'.5]. According to [H.2] and (2.87) there

exist r7> 0 such that, for every e E K(c 2) - K(cj)

u'(e)h(E) < -ij < 0. (2.114)

Let T satisfy (T - 1)77 > c2 - cl and let lb be a C2-function on Rd, with bounded

second order derivatives, equal to U on K(c2) and greater than or equal to c2 on

the complement of K(c 2). We define the following integer-valued random variables:

0 sup{n : < r(c2), E. E K(c1 )} (2.115)

p inf{n n > a,a,+i+. + +i >- T}. (2.116)

(According to definition (2.23): p = m(a,T)). Set

I {w r(c2 ) < o, a(C) > r(c 2 )} (2.117)

71 p A r(c2 ). (2.118)

For w in fti,

ji < r(c 2 ) A a(c) = v(E, K(c2)) (2.119)

Formula (2.44) gives

ID(e-) - ,(O,,) - a,+I,'(e) h(e,) = E ,(I). (2.120)

For w in fl1, the left hand of (2.120) is greater than c2 - c1 . If 1 = i-(c 2) and if

= - < r(c 2 ) then from (2.114) it is greater than 77(T - 1) ? c2 - cl. Therefore

(c2 - c)9P,( 1 ) <_ E.,. fla,1E E,(.)jq (2.121)

r k-I
up sup E Ce(c'i (2.122)

I" <k<m(n,T) i=.

An application of Lemma 2.5.1 gives Lemma 2.5.2. M

Next, we have

Lemma 2.5.3 Let cl,c2,q be such that co < cl < c2 < C and q 2_ qo(A), then

there exist co, B 3, 53 such that for all a E K(cl) and all x

P,(a(eo) = +o, r(c 2) = +oo) > 1 - B3(1 + Ixk) l  (2.123)
k4O
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Proof:

The complement of the set {a(Eo) = +oo, r(C2) = +oo} is {r(c2 ) < 00, a(eo) >

7(c 2 )} U {(60) < +00, r(c 2 ) 2 a(Eo)} where E0 is the constant in hypothesis [H'.5].

Applying Lemma 2.5.2 to

P., 0(r(c 2) < cc, a(Eo) > r(c 2 )) (2.124)

and applying Lemma 2.3.1 we see that

P-,o(u(Eo) _ 7r(c 2), 0(1o) < c) < M(l + IxJ') E ak. (2.125)
k>1

This gives Lemma 2.5.3. U

Finally, we have

Lemma 2.5.4 Let c and e satisfy co < c, c <_ co. Then for every x and every a in

the interior of K(c), the sequence {e,} converges a.s. to F for w in {w : r(c) =

+0, (E) = +00}

Proof:

Let cl be any number between c and c. Set

f12 : ={r(c) = +oo, a(e) = +oo n {limsup U(EO) > CI}. (2.126)

The lemma follows if we show that

P.,o12) = 0. (2.127)

Let c' satisfy co < d < cl < c. In view of [H.7] and (1.1.4) there exist 17 > 0 such

that, for 9 E K(c) \ K(d)

U'(O)h(E) < -1. (2.128)

Choose T big enough for

(T - 1)77 - c > cl - c. (2.129)

A sequence (V, W,) of integer-valued random variables can be constructed such

that on

r < V, < W, < n(V,,4T) (2.130)
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and

U(e~w.) - U(ev) - a+iu'(e,).h(j > cl - c'. (2.131)
i=V,

If -t is a regular extension of U outside K(c), then on 12

W'-t k-1

0 < c1 - C' < E ei(I) : sup sup I E,(4)I. (2.132)
i=V, n>r n<k<m(n,T) i=n

According to Lemma 2.5.1(ii) this quantity tends to zero a.s. on 022 which im-

plies that P,.(£02) = 0 and hence the lemma follows from the construction of the

sequence (V,, W,) satisfying (2.130) and (2.131) hold.

Next we show how to construct this sequence. Let N be given and set a

inf{n > N, E E K(c)}

1st Case: a = +oo.

Set V = N,W = m(N,T). The property (2.131) then holds for (V, W) since

on [V, W), en E K(c) \ K(c), and U(Ew) - U(Ev) > -c.

2nd Case: a < oo

Set u := inf{n > a, E, 0 K(cj)} and observe that for w in 22, u is less than

infinity. Define

j := sup{n > a, n <_I, e,, E K(c')} (2.133)

Ti := inf{n > ,a,+i+.. + ,+ T}. (2.134)

Let V = d, W = p Aj2.

(1) If p _t A then ew V K(c1 ) and 9 v E K(c). Therefore U(Ew) - U(Ev)

Cl - C'.

(2) If p > p then EOw . K(c) and Ov E K(d) for every i such that V < i < W.

Hence one has 1V E K(c) - K(c), which implies
W-1

- Z ai+,U'(Ei).h(ei) 2- i7T > c1 - c'. (2.135)
s=V

In both case, V and W have been chosen such that N < V < W and (3.4.4)

holds. This procedure can be applied for N = 1 and then recursively to obtain the

sequence (V, W,). This completes the proof of Lemma 2.5.4. U

Lemma 2.5.3 and Lemma 2.5.4 together give Theorem 2.4.1.
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Chapter 3

Learning Vector Quantization

In this chapter we discuss Learning Vector Quantization (LVQ), a method for non-

parametric classification proposed in (Kohonen [1986]). We present a modification

to the algorithm yielding classification regions for a larger set of initial conditions.
We prove that the algorithm converges to asymptotically stable points of an or-

dinary differential equation. Finally, we demonstrate that as a certain parameter

becomes large, it is possible to closely approximate the optimal Bayes risk function.

In Chapter 1, we showed that the optimal decision regions can be calculated

directly from the pattern densities. To illustrate, suppose there are two patterns

and that each pattern density is Gaussian with zero mean. Figure 3.1 shows a
plot of two such pattern densities. Here pattern 1 has a variance equal to 1, and

pattern 2 has a variance equal to 4. The decision regions are easy to calculate if

we follow the Bayes decision rule for minimum error and assume that each pattern

P1(x)

P2(x)

X

Figure 3.1: Plot of two pattern densities
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pattern 2 pattern I pattern 2
-00 000

Figure 3.2: Plot of decision regions

is equally likely. These regions are calculated using (1.2) and are displayed in

Figure 3.2.

The decision regions are computed using the individual pattern densities. How-

ever, the pattern densities are usually not available, instead, the only knowledge

available is a set of independent observations of each pattern. In Chapter 1 we

showed that if we use consistent nonparametric density estimators and if the den-

sity estimators are legitimate densities, then the approximate risk approaches the

optimal risk as the number of observations approaches infinity.

Continuing with the example above, we see that for both densities a majority

of the observations occur near zero. Nonparametric density estimation schemes try

to minimize the expected error. In this example, estimates of both densities will

try to minimize the error near zero since that is where most of the observations

are located. Since we are only calculating the densities in order to calculate the

optimal decision regions, we need to be concerned with the fact that the errors in

the density estimates contribute to errors in the resulting classifier. In general, it

is hard to predict how this two step approach will behave. LVQ is an algorithm

which attempts to alleviate this problem by estimating the decision regions directly.

Unlike some other nonparametric classification schemes, it does not first estimate

the densities and then proceed to calculate the decision regions.

The idea behind LVQ is to perform vector quantization using the absolute

value of the difference of the two pattern densities. In this example, this is the

function displayed in Figure 3.3. This function can be used as a density function

for the vector quantization algorithm. As was shown in Chapter 1, given a vector

quantizer it is possible to construct a consistent density estimate. Applying those

results here, we see that the vectors in vector quantization can be employed to

construct a consistent estimate of the optimal decision regions. The resulting
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IP2(x) - (x)Il

x

Figure 3.3: Absolute value of the difference of the pattern densities

quantization vectors can be used to define decision regions via a majority vote of

the observations that fall in their Voronoi cells.

In LVQ, vectors representirg averages of past observations are calculated. These

vectors are called Voronoi vectors. Each vector defines a region in the observation

space and hence characterizes an associated decision class. In the classification

phase, a new observation is compared to all of the Voronoi vectors. The closest

Voronoi vector is found and the observation is classified according to the class of

that closest Voronoi vector. Hence, around each Voronoi vector is a region, called

the Voronoi cell, which defines an equivalence class of points all belonging to the

decision class of that vector. An example of eight Voronoi vectors in R2 and their

associated Voronoi cells are shown in Figure 3.4. LVQ is similar to nearest neigh-

bor classification except that only the nearest Voronoi vector is found instead of

finding the nearest past observation.

In the design or learning phase, a set of training data consisting of already

classified past observations is used to adjust the locations and the decisions of the

Voronoi vectors. The vectors are initialized by setting both the initial locations

and the initial decisions. Once the initial locations are fixed, the initial decisions

are found by a simple majority vote of all the past observations falling in each

Voronoi cell. This initialization process is discussed in full detail in Section 3.6.

The vectors are then adjusted by a gradient search type algorithm. Specifically, an
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Figure 3.4: Voronoi vectors and their Voronoi cells

observation is picked at random from the past observations; if the decision of the

closest Voronoi vector and the decision associated with the new observation agree,

then the Voronoi vector is moved in the direction of the observation, if however the

decisions disagree then the Voronoi vector is moved away from that observation.

This process is continued for several iterations through the past observations until

all the Voronoi vectors' locations converge.

The heuristic idea behind this adjustment rule is that if the decision of the

new observation and the decision of the closest vector agree thm the Voronoi cell

is probably close to the correct position and the Voronoi vector should be moved

closer to that observation, conversely, if the decisions disagree then the Voronoi

vector should move away from that observation. On the average, the vectors will

converge to positions which approximate the optimal decision regions. We will

make this more precise in the sections to follow. The amazing feature of this algo-

rithm is that it only takes a small number of vectors to get satisfactory classification

results as will be seen from the simulation results presented in Chapter 4.

3.1 Description of the Algorithm

The LVQ algorithm was originally presented in (Kohonen [19861). In what follows,

we descrbe the LVQ algorithm. To begin with, let the past observations lie in
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and let e = {f0, .. O } be the Voronoi vectors. The observation space is

partitioned into Voronoi cells. Each Voronoi cell has a defining vector 0i and an

associated decision class d0 . The cell consists of all points in the observation space

which are closer to that vector than to any other Voronoi vector. An observation

x is classified as type do, if it falls within the Voronoi cell defined by Bi. Let p(8, x)

be a cost function satisfying the conditions described in Section 1.5. Voronoi cells

are characterized mathematically by

V1o, x E RdIpgoi,'X) < p(Oj, X), j 4 /} / -- 1,...,k. (3.1)

By convention, we assign equidistant points to that Voronoi cell with the lowest

index.

The algorithm for adjusting the vectors 9i is now described. Let {(yn,d. )}n=1

be the past observations set. This means that yn is observed and has as its pattern

class dy,. In order for this problem to be well-posed, we assume that there are

many more observations than Voronoi vectors (see (Duda & Hart [1973])), i.e., N

is much greater than k.

Once the Voronoi vectors are initialized, training proceeds by taking a sample

(y., dy.,) from the past observation data set, finding the p-closest Voronoi vector,

say 0,, and then adjusting 0, as follows:

O(n + 1) = O(n) - an Vop(O,(n),yn) (3.2)

if deo = dv. and
0,(n + 1) = 0,(n) + a,, Vop(0(n), yn) (3.3)

if do. 6 d1 .. Here n is the iteration number. In words, if y, and 0,(n) have the

same decision then 0,(n) is moved closer to y,, however, if they have different

decisions then 8,(n) is moved away from yn. The constants {an} are positive

and nonincreasing. Notice that only the Voronoi vector which is closest to the

observation is adjusted by the algorithm. The other vectors remain unchanged.

In the next section, we show convergence of the algorithm in two cases: (1) when

the number of past observations becomes arbitrarily large and each observation is

presented once and (2) when the number of past observations is fixed and the

number of presentations of each observation becomes arbitrarily large. In both
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cases, convergence is shown by finding the function h(s) in the associated ODE and

studying its properties in order to apply the convergence theorems of Chapter 2.

3.2 Convergence to Stationary Points

The convergence theorems of Chapter 2 show that as the number of iterations goes

to infinity, the estimate 9, converges to G*, an asymptotic stable equilibrium of

the associated ODE (2.3). Given an iterative scheme of the form (2.19), one only

needs to find the function h(s) in order to study the convergence properties of

that scheme. In this section, we find h(G) for the case of an infinite number of

observations and the case of a finite number of observations. First, we present the

LVQ algorithm precisely.

The LVQ algorithm has the general form

Oi(n + 1) = Oi(n) + an,, -(dy, de,(,), y., On) Vap(Oi(n), yn) (3.4)

where the function -y determines whether there is an update and what its sign

should be. It is given by

1(dy., de,(n), Yf. On) = 1 -{y.Ev.,) if d. =dO,() (3.5)
l{.EVj if dy. de,(n)

or, more compactly,

"(d,., de,(n),yn, E.) = -1{y.eV.,}(l{d,.=d., - l{d,,,.}). (3.6)

This is a stochastic approximation algorithm with p (0, x) 0 (see (2.19)). It has

the form

en+l = en + an H(en, zn) (3.7)

where E is the vector with components 0; H(e, z) is the vector with components

defined in the obvious manner in (3.4) and z, is the random pair consisting of the

observation and the associated true pattern number. If the appropriate conditions

are satisfied by an, H, and zn, then EO approaches the solution of

d - (t) = h(O(t)) (3.8)
dt

for the appropriate choice of h(e) (Theorems 2.3.1, 2.4.2).
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Throughout this section we consider the case of two pattern densities. In

the subsections below we treat convergence separately for the cases of infinite

past observations presented consecutively and finite past observations presented

infinitely many times. In both cases we obtain convergence via the ODE method

discussed in Chapter 2.

3.2.1 Convergence for an Infinite Number of Observa-

tions

In this section, we discuss convergence for the LVQ algorithm as the number of

observations becomes arbitrarily large. Throughout this section we assume that

the Voronoi vectors are ordered so that the first k0 vectors have decision class equal

to pattern 1 and the remaining have decision class equal to pattern 2.

It is shown next that the function h(G) of the associated ODE takes the form

/ve q(x) Ve, p(01, x) dx

J q(x) Ve,,p(Oko,x)dx

h(E)) = = (3.9)
hko+l(e) - q(x) V 9,.+,p(Ok0+l, x)dx

hk(E))
q(x) Ve.p(Ok.x)dx

with q(x) = P2(x) 7r2 - P1 (x) r1. If we let

fi(E,x) = l{fzEV,,} Vep(G,,x) (1(,ko} - lfi>k}) (3.10)

then we see from (3.9) that

h,(E) = jfi(e,x) q(x) dx. (3.11)

We assume that the training data {z'}$N I consist of pairs of independent,

identically distributed observations. The second component of the pair represents
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the pattern that was true when the first component was observed. For example, a

generic pair in the training data can be represented as z, = (y,,, d.) with

i 2 =P(d. =2) and r, =P(dy 1), (3.12)

7r, + 7r2 = 1. For each n, y,, is distributed according to the probability density

function P2(Y) when d. = 2 and according to pi(y) when dy = 1.

Next we show that H,(E),, z,,) = hi(e,,) + i(n) where ,(n) is a noise sequence.

Let E. denotes the expectation with respect to the random variable z, where we

have dropped the subscript n for ease of notation and let E1 (resp. E2) denote the

expectation with respect to P1(Y) (resp. P2(Y)). To begin the analysis,

E.[H,(E, z)] = E, [ld=ljH,(O, (y, 1))] + E, [1d=2jH,(G,(y, 2))] (3.13)

= El[ H,(, (y, 1))] ir1 + E2 [H,(E, (y, 2))] r2  (3.14)

= E -y(1,de,,y,() Vo, p(Oi,y)] 7r

+E2 [-y(2, do,, y, 9) Ve,p(Oi, Y)] 72 (3.15)

= Ei [1, V,, (-lfi<k} + l{,>ko}) Vep(Oi, )] Y7 1

+E 2 [1YEvo, (lf,<k} - 11i>ko}) Vep(O,, y)] r2 (3.16)

= -E Iff(E, y) 7r, + E2 If,(E, y)) 7r2  (3.17)

= hi(O). (3.18)

From the results above we see that ,(n) is a zero mean process with variance given

by

E, ( IlH,(E, z) - h,(E)11 2  E £ ( [[IIH(O, z)[2 - fh,(E)( 2  (3.19)

where

E, [ UH,(E, Z) ] - E. [ 11 VoiP(6,, Y)j2] (3.20)
-Ei [Jig pe, y)112] 7ZTI + E2 [JIiVeip(E9, y)112] 7r2 (3.21)

k

E- = Vo IIVep(O,,X)11 2 (PI(x)7r + p 2(X)ir 2 )dx(3.22)

For the remainder of this chapter we assume that p(O, x) satisfies the following
three properties:
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(a) p(8, x) is a twice continuously differentiable function of 9 and x and for every

fixed x E R' it is a convex function of 9.

(b) For any fixed x, if 9(k) - oc as k -. oo, then p(9(k), x) - oo.

(c) For every compact Q C Rd, there exist constants C, and q, such that for all
9EQ

IVep(9,X)l < C1 (1 + lXlq'). (3.23)

An example of a function which satisfies the properties above is p(9, x) = 110, - X112.

We now state the two convergence theorems alluded to in Section 3.1.

Theorem 3.2.1 Let {z,,} be the sequence of independent, identically distributed

random vectors given above. Suppose {a,,} satisfies [H.1],[H.6] and that p(, x)

satisfies the properties (a)-(c) above. Assume that the pattern densities pi (x) and

p2(x) satisfy [H'.5] and h(s) is locally Lipschitz.

If 0 .(t) remains in a compact subset of Rd for all t E [0,T], then for every

6 > 0 and all X 0 = x

liM P,.{ sup 10n - eo(tn)l > 6} = 0 (3.24)01 10 . n<m(T)

where 9, satisfies (3.7) and e;(t) satisfies (P.8) with h(O) defined in (3.9). Here
tn = E = a,.

Theorem 3.2.2 In addition to the conditions of Theorem 3.2.1, assume G3 is a

locally asymptotically stable equilibrium of (3.8) with domain of attraction D*. Let

Q be a compact subset of D*. If E,, E Q for infinitely many n then

liM e = a.s. (3.25)

Proof of Theorem 3.2.1:

In view of Theorem 2.3.1, we need only verify that [H.1]-[H'.5 are satisfied.

The observations z, are independent, identical!y distributed and are indepen-

dent of the values of E and {z,}i<n therefore {E), z } fcrms a trivial Markov chain.
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If we let fle(z, B) denote its transition probability then

P{z.. 1 E B JY,} = re(zn,B) (3.26)

= dx + dx. (3.27)

Hence hypothesis [H.2] is satisfied.

Note that

IH,(e,z) = JVup(O,,z)J. (3.28)

Therefore, [H.3] is satisfied.

The transition probability function is independent of E therefore if we let

v(e, z) = H(e, z) then

i) h(E) = Have, and therefore [H.4 ii] is satisfied;

ii) Ive(z)I = IH(e,z) = jVe,p(O,,z)j, and therefore [H.4 iii] is satisfied using by

property (c).

Therefore, [H.1]-[H'.5] are satisfied, which proves Theorem 3.2.1. U

The proof of Theorem 3.2.2 is similar that of Theorem 3.2.1.

3.2.2 Convergence for a Finite Number of Observations

The convergence above applies when the number of observations goes to infinity.

Unfortunately, it is usually the case that only a fixed set of data is available.

The update in this case consists in picking a point uniformly at random from

the observation set and presenting it to the LVQ update. Several iterations are

necessary in order to achieve convergence. This method is known as the bootstrap

learning method. Next, we explore the convergence properties of the algorithm

using a fixed data set of size N.

Let Z - {Iz}_ I represent the set of past observations and let N, represent the

number of observations from pattern 1 and N2 represent the number of observations

from pattern 2 in Z. For each update, a point z, is picked at random from Z;

an update of the LVQ algorithm is performed; the point is returned to Z and the

process starts over again. Here {zn,,}j l represents the sequence of updates. We

assume that the points are picked independently with probability 1/N.
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Once Z is given, the randomness in this algorithm enters only through the

process of picking the points to be used in the update of the Voronoi vectors.

Estimates of the pattern densities based on Z are given by

I(x;N) = V-Z 6(=y )ld.j=l) (3.29)
1j=

P 2(Xc;N) = T22 b(X= yj)Ifd,j=a2,(330

and estimates of the priors are given by

N, N2Nrl = - and 7r2 = 7 (3.31)

where 6(z) is the delta function. Let H(1, z) be the vector of components defined

in (3.4). We see that

h,(E;N) = k,[Hj(Oz)] (3.32)

= E[Hi(e,(y,l))]fr + E2[Hi(e,(y,2))]fr2 (3.33)N

- _ -Ve P(ypi,) l{,EV.} (lfd,,=d.,} - l{dj,#4,}). (3.34)
Nj=1

where h(E; N) denotes the function based on the N observations. We are now

ready to state convergence theorems analogous to those obtained in the case of an

infinite number of observations.

Theorem 3.2.3 Let {Z, }= be the independent sequence of random vectors picked

from Z as described above. Suppose {a,} satisfies [H.1],[H.6] and p(O, x) satisfies

the properties (a)-(c).

If e.(t; N) remains in a compact subset of W" for alt t E (0, TI, then for every

6 > 0 and all X0 = x

lir P,{ sup 19. - 6.(t.;N)l > 6} = 0 (3.35)
a10, n<m(T)

where eO satisfies (3.7) and 0.(t; N) satisfies (3.8) with h(E; N) defined by (3.34).

Here t, = E=i a,.
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Figure 3.5: A possible distribution of observations and two Voronoi vectors.

Theorem 3.2.4 In addition to the conditions of Theorem 3.2.3, assume E" is a

locally asymptotically stable solution of (3.8) with h(G; N) defined by (3.34) and

with domain of attraction D. Let Q be a compact subset of D*. If e E Q for

infinitely many n then

lime, = en a.s. (3.36)

The proofs of these theorems follow directly from the proofs of Theorem 3.2.1

and Theorem 3.2.2 with h(s) = h(e; N) and P(z = z,) = 1/N. We note that by

(SLLN) as N, and N2 go to infinity, h(E; N) converges with probability one to the

function h(s) given by (3.9). This follows since by (SLLN) we have that P1(x; N),

32(x; N), f1 and *2 converge with probability one to their true values.

3.2.3 Remarks on Convergence

The convergence results above require that the initial conditions are close to the

stable points of (3.8), i.e., within the domain of attraction of a stable equilibrium, in

order for the algorithm to converge. In the next section we present a modification to

the LVQ algorithm which increases the number of stable equilibrium for equation

(3.8) and hence increases the chances of convergence. In the remainder of this

section we present a simple example which emphasizes a defect of LVQ and suggests

an appropriate modification to the algorithm.

Let Q represent an observation from pattern 2 and let L represent an ob-

servation from pattern 1. We assume that the observations are scalar and that

p(0, x) is the Euclidean distance function. Figure 3.5 shows a possible distribution

of observations. Suppose there are two Voronoi vectors 01 and 02 with decisions 1

and 2, respectively, initialized as shown in Figure 3.5. At each update of the LVQ

algorithm, a point is picked at random from the observation set and the Voronoi
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vector corresponding to the Voronoi cell within which the point falls is modified.

We see that during this update, 02(n) is pushed towards oo and 01(n) is pushed

towards -oo, hence the Voronoi vectors do not converge.

This divergence happens because the decisions of the Voronoi vectors do not

agree with the majority vote of the observations falling in their Voronoi cells. As

a result, the Voronoi vectors are pushed away from the origin. This phenomena

occurs even though the observation data is bounded. The point here is that if the

decision associated with a Voronoi vector does not agree with the majority vote

of the observations contained in its Voronoi cell then it is possible for the vector

to diverge. A simple solution to this problem is to correct the decisions of all the

Voronoi vectors after every adjustment so that their decisions correspond to the

majority vote. This is pursued further in the next section.

3.3 The Modified LVQ Algorithm

In this section we investigate how the majority vote correction affects the LVQ

algorithm. Recall that during the update procedure in (3.4), the Voronoi cells are

changed by changing the location of one Voronoi vector. After an update, the

majority vote of the observations in each new Voronoi cell may not agree with

the decision previously assigned to that cell. In addition, after the majority vote

correction, the number of pattern 1 Voronoi vectors can change. This results in a

change in the number k0 since dun_6 the correction a Voronoi vector's associated

decision class can be changed from pattern 1 to pattern 2. For this procedure to

be mathematically sound, we insist that the correction be done at each iteration'.

Let
N

if () N)1, 1v.j=1} > 1 ,V l fyiEV, }ld,.=2} (3.37)g,(e; N) - 1 i ~#v, {,=} f

2 otherwise.

Clearly, gi represents the decision of the majority vote of the observations falling

in Ve,. The update equation for 8, becomes

Oi(n + 1) = Gi(n) + a. "((dp., (i(O,; N), y,, On) V 6,()p(9i(n),y,). (3.38)
11n practice, the frequency of re-calculation would be determined by the problem and would

probably not be done at every step.
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This equation has the same form as (3.4) with the function H(1, z) defined from

(3.38) replacing H(1, z). Let h(e; N) be the function for the associated ODE. In

the case of a finite number of observations, it follows that

h,(e;N) = E,[H,(e,z)] (3.39)
_LN

S-:'i(E; N) N  _ Vep( 1 , yj)l1fjEv,}(1{d,,=2} - 1{d,.=1})( 3 .40)
j=1

- 5",(e; N) (lid,,=2} - 1{d,,=1}) hi(E; N) (3.41)

where

ji(E;N) = sign { 1fyiVei)(ldlI=2 t -- -1d 3 =I})} (3.42)
"" j=---

and hi(e; N) is as defined in (3.34). Therefore we see that the equilibrium points

of hi(E; N) are the same as the equilibrium points of h(E; N). Showing that the

majority vote modification results in a larger number of stable equilibrium points

is a hard problem and more work needs to be done to support this claim.

In the case of an infinite number of observations, we can give a heuristic ar-

gument that supports this claim. Notice that from (SLLN) as the number of

observations goes to infinity, h(O; N) converges with probability one to h(e) given

by

h,(E)) = -sign {Jvo q(x) dx} J V Ve,p(8,, x) q(x) dx (3.43)

with q(x) = p2(x)ir 2 -pl(x)7rr. If the size of each Voronoi cell is small then by the

mean value theorem h,(e) is approximately equal to

h(e) = -i Vep(O, x) I q(x)I dx. (3.44)

The right-hand side of the last equation is minus the (ith component of) gradient

of the cost function
k

J(O) = p(O, x) Iq(x)I dx. (3.45)

Therefore, from Lyapunov stability it follows that all of the equilibria are stable.

3.4 Generalization to Several Patterns

The convergence results above are true in the case of several pattern densities with

the appropriate modification to the notation and some additional assumptions.
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Suppose there are f patterns then

t
q(x,o,) = Pd, p(X)7d() -j (3.46)

'-I

where Pd., (x) is the pattern density associated with the decision of 9i and lrd,i its

prior probability of occurrence. The functions hi(E) resulting from equation (3.11)

are given by

hi(E) = v Ve, p(Oi, x) q(x, Oi) dx i = 1, ... ,k. (3.47)

In order for the decision regions to make sense their decisions must agree with

the majority vote of the observations falling in their Voronoi cells. For the binary

case discussed above, this was enforced via the requirement that

I q(x) dx<O for i<k 0  
(3.48)

V q(x)dx > O for i>k 0  
(3.49)

Two requirements are necessary for the decision regions in the case of several pat-

terns. The first requirement is that the decision of each cell must be the majority

vote of the observations falling in that cell. More precisely,

d, = arg max { Ji(x) 7rdx} (3.50)

where pi(x) is the pattern density for pattern j and irj its prior probability of

occurrence. The second requirement is that for each Voronoi cell

f q(x, Oi)dx > 0 i = 1,...,k. (3.51)

This requirement can be explained by noting that for region Vo, the probability of

a correct decision is equal to

P,(Ve,) = e pd.,(x) 7rd,. dx (3.52)

and the probability of error is equal to
£

P.(Ve,) = Z pi(x) 7ri dx. (3.53)
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Hence this requirement (expressed by equation (3.51)) is nothing more than the

requirement that the probability of correct decision be greater than the probability

of error for each region.

3.5 Decision Error

In this section we discuss the error associated with the modified LVQ algorithm.

Here two results are shown. The first is the simple comparison between LVQ and

the nearest neighbor algorithm. The second result shows that if the number of

Voronoi vectors is allowed to go to infinity at an appropriate rate as the number of

observations goes to infinity, then it is possible to construct a consistent estimator

for every risk discussed in Chapter 1. That is, the error associated with LVQ can

be made to approach the optimal error. As before, we concentrate on the binary

pattern case for ease of notation. The multiple pattern case can be handled with

the modifications discussed above.

3.5.1 Nearest Neighbor

If a Voronoi vector is assigned to each observation then the LVQ algorithm reduces

to the nearest neighbor algorithm. For that algorithm, it was shown (Cover &

Hart (19671) that its Bayes minimum probability of error is less than twice the that

of the optimal classifier. More specifically, let r* be the Bayes optimal risk and let

r be the nearebt ,,gbr risk. !t was shown that

r" < r < 2r*(1 - r') < 2r*. (3.54)

Hence in the case of no iteration, the Bayes' risk associated with LVQ is given from

the nearest neighbor algorithm.

3.5.2 Other Choices for the Number of Voronoi Vectors

We saw above that if the number of Voronoi vectors equals the number of observa-

tions then LVQ coincides with the nearest neighbor algorithm. Let kN represent the

number of Voronoi vectors for an observation sample size of N. We are interested

in determining the probability of error for LVQ when kN satisfies (1) limkN = 00
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and (2) lim(kv/N) = 0. In this case, there are more observations than vectors and

hence the Voronoi vectors represent averages of the observations.

Letting the number of Voronoi vectors go to infinity with the number of obser-

vations presents a problem of interpretation for the LVQ algorithm. To see what

we mean, suppose that kN = LVJ, then every time N is a perfect square, k is in-

cremented by one. When k is incremented the iteration (3.7) stops, a new Voronoi

vector is added, and the decisions associated with all of the Voronoi vectors are

recalculated. Unfortunately, it is not clear how to choose the location of the added

Voronoi vector. Furthermore, if the number of Voronoi vectors is large and if the

Voronoi vectors are initialized according to a uniform partition of the observation

space, then the LVQ algorithm does not move the vectors far from their initial

values. As a result, the error associated with initial conditions starts to dominate

the overall classification error. In view of these facts, we now consider the effects of

the initial conditions on the classification error and examine the algorithm without

learning iterations for large kN.

Let EN = {01,... ,, } and assume that the Voronoi vectors are initialized so

that

Vol(Ve,) = O(-L). (3.55)

Here we assume that the pattern densities have compact support. Let y E V0, and

suppose that
1) = (3.56)

j=1
with wh 1{yiEv,,}(1{ dW=2} - 1{d,,=}) (3.57)

Y = Vol(V,) (

Then an argument similar to that in Theorem 1.4.3 shows that 4(y; N) is a weakly

consistent estimator of q(y). Therefore the decision associated with 9, converges

in probability to the optimal decision, i.e., if q(Oi) >_ 0 then 9, is assigned decision

class 2 and otherwise 9, is assigned decision class 1.
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3.6 Initialization

As with many locally converging adaptive schemes, the initialization of the paraxn-

eters in LVQ is crucial to the ultimate success of the detector. The initialization for

this algorithm involves picking the number of Voronoi vectors and their locations.

The decisions for the Voronoi vectors axe given by the majority vote algorithm.

3.6.1 The Number of Vectors

In the original presentation of LVQ, Kohonen postulated that in order to preserve

the underlying probabilistic structure, the relative number of Voronoi vectors for

each pattern should be related to the prior probabilities of occurrence. While this

conjecture seems plausible, it need not be true. Consider the example presented at

the beginning of this chapter. In that example both patterns were equally likely,

however, twice as many Voronoi vectors were needed for pattern 2 as were needed

for pattern 1. It seems that the number of Voronoi vectors for each pattern should

be chosen as a function of each pattern variance. This observation was also made

in (Kangas et al. [1989]).

More work needs to be done to state exactly how the number of Voronoi vectors

should relate to the pattern densities, but we note that if the total number of

Voronoi vectors is large and if the initial decisions are chosen by majority vote

,then the relative number of Voronoi vectors assigned to each pattern is related to

the pattern variances and the priors. Therefore, at least indirectly, the modified

algorithm already accounts for pattern variance.

At present, picking the number of Voronoi vectors is somewhat arbitrary. A

good rule of thumb is to pick about v/'N vectors where N is the number of past

observations used in training. This number is in keeping with other nonparametric

methods (Rao [1983]).

3.6.2 The Initial Locations

There are several methods for initializing the locations of the Voronoi vectors. We

will discuss (1) selecting the locations uniformly in the pattern space; (2) choosing
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the locations from the past observations; and (3) calculating the locations using

vector quantization on the past observations.

Selecting the locations uniformly in the pattern space is desirable when the

number of Voronoi vectors is large, or equivalently, when the resulting Voronoi

cells are small. In this initialization method, the majority vote algorithm closely

approximates the optimal decision regions due to the fact that the integral over

the Voronoi cell is estimated by the integrand using the Mean Value Theorem.

Choosing the locations based upon the past observations was first proposed in

(Kohonen (1986]). This method has a drawback in that the observations chosen as

initial conditions may not be representative of their patterns. In addition, since the

locations of observations are probabilistic, it is possible that large regions in the

pattern space could be represented by one Voronoi vector. Therefore, this method

should only be used when the observations used as initial locations for the Voronoi

vectors are representative of the whole observation set.

Calculating the locations using vector quantization is the best method to use

when the number of Voronoi vectors is small in comparison to the number of

observations and/or the dimension of the observations. This method was proposed

in (Kangas et al. (19891). Let z, = (y, d,,.) be an observation. This method

involves performing vector quantization on the data set Y = {y,}. Once the

optimal quantization vectors are found, they are used as Voronoi vectors with

their decisions determined by the majority vote of the observations contained in

their Voronoi cells. This method results in initial vectors whose locations are

representative of the whole observation set.

3.7 Application to Other Risks

In this section we show how to modify LVQ in order to be able to handle the

risks discussed in Chapter 1. To account for other risks, one modifies the number

of observations in each pattern so that the risk corresponds to the Bayes risk for

minimum probability of error of the modified problem. To see this, note that each

risk in Chapter 1 had its regions defined by S2 = {x : p1(x) - tp2(x) > 0} for

the appropriate choice of t. Therefore, we find Fr and *2 such that t = *2*/f and
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then adjust the number of observations so that NI/N is close to FI, N/N is close

to r2 and both converge as the number of observations go to infinity. Here, N,
(resp. N2 ) are the number of observations from pattern 1 (resp. 2).

3.8 Remarks

In this chapter, it was shown that the adaptation rule of LVQ is a stochastic

approximation algorithm and under appropriate conditions on the adaptation pa-

rameter, the pattern densities, and the initial conditions, that the Voronoi vectors

converge to the stable equilibria of an associated ODE. We presented a modifica-

tion to the Kohonen algorithm argued that it results in convergence for a wider

class of initial conditions. We showed that LVQ is a general histogram classifier

and that its risk converges to the optimal risk as the appropriate parameters went

to infinity with the number of past observations. Finally, we discussed several

methods for initializing the Voronoi vectors.
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Chapter 4

Simulations

In this chapter we use computer simulations to demonstrate several of the proper-

ties of LVQ. The simulations are used to compared LVQ to two other classification

techniques, namely, adaptive histogram and second order parametric classifica-

tion. Two sets of twelve examples were simulated and the results tabulated in

the sections to follow. The first set of examples was concerned with the detec-

tion between two different Gaussian patterns. The simulation set was taken from

(Chi & Van Ryzin [1977]) where it was used to compare the adaptive histogram

method to the second order parametric one. The second set of simulations dealt

with the discrimination between Rayleigh distributed and lognormal distributed

patterns. This simulation set demonstrated the superiority of LVQ over second

order parametric classification. In all the simulations, the performance of the op-

timal detector was displayed in order to compare the adaptive methods to the

best possible performance. The optimal detector always performed better than

the adaptive classifiers because the optimal classifier has complete statistical in-

formation whereas the other classifiers have to estimate their statistical knowledge

from the observation set.

Within each set of simulations, the parameters of the LVQ algorithm were

varied in order to determine their effects on the overall classification performance.

In particular, the size of the observation set, the number of Voronoi vectors, the

number of iterations through the LVQ algorithm, and the adaptation rate a,, were

all varied. The initial locations of the Voronoi vectors were fixed in all examples.

The second set of simulations was carried out in order to compare LVQ against
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second order parametric classification when both patterns were not Gaussian. We

felt that it was important to see how LVQ performed against second order para-

metric when the pattern models were non-Gaussian. In particular, we wanted to

see how the second order parametric classifier would perform when the pattern

means or the pattern variances were the same.

As was mentioned before, the power of nonparametric detectors lies in their

independence of an assumed model. This is particularly important since assuming

a model and identifying its parameters will result in suboptimal performance when

the data comes from another model. This was demonstrated clearly by the second

simulation set.

This chapter is organized as follows: In Section 4.1, we describe the overall

simulations performed. In Sections 4.2-4.3, we describe precisely each example in

the simulation sets. In Section 4.4, we analyze the results of the simulation and in

Section 4.5 we present some concluding remarks.

4.1 Simulation Setup

In this section we describe how the simulations were carried out. We are con-

cerned with comparing LVQ to the adaptive histogram method of VanRyzin and

to second order parametric classification. Second order parametric classification

consists in assuming a unimodal Gaussian model for both pattern densities and

then calculating the sample means and variances from the observation set. The

detection regions are then found by using the corresponding Gaussian densities in

the Bayes minimum probability of risk.

The adaptive histogram method of (Chi & Van Ryzin [1977]) was discussed

previously in Section 1.3.1. Recall that the adaptive histogram classification con-

sists in ordering the unlabeled observation data and then constructing bins which

contained a fixed number of observations. After the bin locations are determined,

their decisions are calculated by a majority vote of the observations falling in each

bin. The number of observations in each bin is approximately equal to [N 0' J

where N is the number of observations (Chi & Van Ryzin (1977]).

For each of the twenty-four cases, 100 independent simulations were run. In
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each simulation, the same observation data was used as input to each of the ciassi-

fication methods. After the simulations were complete, the averages and the stan-

dard deviations for each case were calculated and recorded in the tabies. Hence,

each table entry corresponds to the average of 100 independent Monte Carlo sim-

ulations with the standard deviation calculated in order to help determine the

significance of the differences in the mean entries. The distance function, p(O, x),

used for the LVQ method was Euclidean distance.

For each simulation set, two different types of tables were generated. The

first table type has the number of LVQ iterations fixed at 10 and the adapta-

tion rate fixed at 0.1, i.e., the past observation set was presented to the adap-

tation algorithm 10 times and a, = 0.1. We let a, = aQ/v where n repre-

sented the number of passes through the entire observation data set. Entries in

the table correspond to varying the number of Voronoi Vectors. The number of

Voronoi vectors was 13, 5, 7} and they were initialized to f-2, 0,2], [-2, -1, 0, 1,2]

or [-3, -2, -1, 0, 1, 2, 3], respectively'. Four tables were generated with total ob-

servation data sizes of 20, 50, 100 and 2002.

In the second table type, the size of the observation set is fixed at 100 and

the number of Voronoi Vectors is fixed at 5. Entries in the tables correspond to

three different values for a, chosen from {0.05, 0.10, 0.25} with a,, defined above.

Three tables were generated with 10, 20, and 40 complete presentations of the

observation data.

Thus, for each simulation set seven tables were generated. For the Gaussian

simulation set, the best classifier among the nonparametric classifiers is high-

lighted. For the non-Gaussian simulation set the best classifier among all classifiers

is highlighted. These tables are given in Section 4.6. In the next two sections, we

describe the parameters of each simulation set and discuss the results of varying

the parameters of LVQ.

'Ideally, a separate calculation would be performed to determine the initial conditions.
2Note that when the total observation data size is 20 that means that if the a priori probability

of pattern I is 0.25 then five independent samples of pattern 1 and fifteen ir Jependent samples
of pattern 2 are used to train the classifiers.
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4.2 The Gaussian Examples

The first simulation set uses Gaussian distributed patterns. The first eleven are

unimodal densities and the twelfth is bimodal (see Table 4.1). The examples along

with a graph of the pattern densities are displayed in Table 4.1. We use this

simulation set for comparison against the results presented in (Chi & Van Ryzin

[1977]). Since the first eleven cases are unimodal Gaussian densities, we expect

that the second order parametric classifier will outperform the other nonparamet-

ric detectors. However, the twelfth case is bimodal therefore we expect that the

second order parametric classifier will fail, and in this case, fail miserably. These

conjectures are borne out in the simulations presented in Tables 4.7-4.13. The

twelfth case serves to illustrate the power of nonparametric classification as op-

posed to second order parametric classification since this case is - 'handled by a

simple mean or variance type test.

4.3 Rayleigh vs. Lognormal Examples

In the second simulation set, the patterns were Rayleigh and lognormal distributed.

The expressions for these densities, along with those of their means and variances,

are displayed in Table 4.2.

This simulation set was constructed to compare LVQ to the second order para-

metric classifier when both patterns were non-Gaussian. The examples were con-

structed in a manner that, we felt, would "confuse" the parametric classifier, e.g.,

cases 3-8 have the same mean and cases 9-10 have the same variance.

The twelve cases in the non-Gaussia simulation set are given in Table 4.3.

This table gives the parameters of both pattern models and a small graph of both

densities. These graphs can be used to determine the optimal decision regions

using the techniques discussed in Chapter 1.
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Example Gaussian Gaussian Priors Plot of Both
Number Pattern I Pattern 2 7r, 7r2  Densities

N(0,1) N(1,1) I

2 2

2 N(0,1) N(1,1) 4 4

3 N(0,1) N(2,1) I
2 2

4 N(0,1) N(2,1) 1 3

5N(0,1) N(.5,I)

6 N(O,1) N(.5,1) 4 4 -.

7 N(0,1) N(0,4) 2 2-

8 N(0,1) N(0,4) 4 4

9 N(0,1) N(2,64) 2

10 N(0,1) N(2,64) 4 i

11 N(0,1) N(1,4) I I

o.5N(0,1) 0.5N(5,1) I
12 +o.5N(10,1) +0.5N(15,1) 2 2 1 \ ,

Table 4.1: Specifications of the Gaussian simulation set
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Density Mean Variance

Rayleigh

PW= 2- 'R aRI Or(2 7 r/2)
R)-V2

Lognorrmal
1 _Qz)1 f 2f

pL(X) = 2 e 2 °L e e e

Table 4.2: Rayleigh and lognormal densities and their properties

4.4 Analysis of the Results

In this section we analyze the results of the simulations. We discuss the effects

of varying the number of Voronoi vectors, the iteration number, the learning rate,

or the observation size. In addition, we discuss the effects of initial conditions on

convergence and the overall performance of LVQ in relation to the other methods.

4.4.1 Number of Voronoi Vectors

From the simulations we see that increasing the number of Voronoi vectors does

not always result in better detection. This can be seen in case 9 of Table 4.14 where

the probability of detection is 0.8559 when three Voronoi vectors are used while for

the same problem is 0.8396 when seven Voronoi vectors are used. This phenomena

occurs because of the relationship between the number of Voronoi vectors and the

number of observations. In Table 4.14, when there are 7 Voronoi vectors and only

20 observations, there is not enough data per Voronoi vector. Even in the ideal

situation there can only be 3 observations per vector, as a result there is poor

averaging. However, as the number of observations is increased to 200 we see that

LVQ with 7 Voronoi vectors does better in most cases than LVQ with 3 or 5. This

time, comparing the results of case 9 in Table 4.17 we see that the probability of

detection for three Voronoi vectors is 0.8598 while for the same problem is 0.8663

for seven vectors.

It is interesting to compare the number of parameters calculated for each of the

nonparametric classifiers. The adaptive histogram classifier has about vfN bins
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Example Rayleigh Lognormal Priors Plot of Both
Number OL UrR 7rL Densities

1 10 0.25 2_

10 0.25 1 3

4 4

3 1 0.4516

4 1 0.4516 4 34

521.8379 1 1
2 2

6 2 1.8379 1 3
4 4

7 3 2.6488 1 2

2 2

8 3 2.6488 i 3

4 4

9 4 0.4 1 ! I-..-_

2 2

10 4 0.4516 3 i
4 I 4

11 3.2989 1 1 2

12 3.2989 1 4 1 _.

Table 4.3: Specifications of the non-Gaussian simulation set
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Number of Number of
Observations Bins

20 4
50 6
100 8
200 11

Table 4.4: Number of parameters in the adaptive histogram method

where N is the number of samples (see Table 4.4) while LVQ has 3, 5 or 7. In

many simulations LVQ performed well with only 3 Voronoi vectors.

When the variance of one or both of the patterns is large then more Voronoi

vectors are needed to represent the pattern classes. This can be clearly seen in

cases 9 and 10 of the Gaussian simulation set. In these cases, pattern 2 had a vari-

ance of 64. More specifically, in case 9 of Table 4.7 the probability of detection was

0.7895 for three Voronoi vectors and was 0.8212 for the same problem using seven

Voronoi vectors. This improvement arises because of the variance of pattern 2.

The larger observation values contained in the observation set pull the Voronoi

cells away from the optimal decision regions; increasing the number of Voronoi

vectors alleviates this problem. Note that if one of the pattern variances is high,

then it is unlikely that an LVQ classifier would be used since a simple threshold

classifier would perform quite well.

4.4.2 Number of Iterations

From the simulations, we see that increasing the number of iterations does not

always result in better classification. For example, a general comparison between

Table 4.18 and Table 4.20 shows no significant difference between classification

errors. In particular, the differences between case 6 in Table 4.18 and Table 4.20

are within experimental error. This is consistent with our experience in generating

the simulations. However, it was somewhat unexpected. Before conducting the

simulations, we were expecting the best classification to occur when a, = .25 and

the number of iterations was 40, because in the beginning of the LVQ iterations

the high adaptation rate would tend to move the Voronoi vectors to the correct
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Gaussian Simulation set
Table LVQ AH

number wins wins
4.7 12 0
4.8 11 1
4.9 12 0

4.10 10 2
4.11 9 3
4.12 9 3
4.13 9 3

Total 72 I  12

Table 4.5: Performance of LVQ vs adaptive histogram

regions and as a,, became smaller their locations would be fine tuned. After all,

when n=20 we see that a20 = .05 which is one of the entries in the tables.

Our only explanation for this behavior comes by noting the high standard de-

viation of the simulation results. This is most likely due to a high noise content

in the generated observation data set. As a result, we feel that the data con-

tained enough noise to overcome the initial conditions and hence a small number

of iterations performed well.

4.4.3 Size of the Learning Rate

The arguments above apply equally well to the learning rate. Our simulations show

no significant difference between the classification errors when the learning rate was

varied from {0.05, 0.1,0.25}. However, we did find that there is a certain threshold

which the learning rate must exceed in order to have a meaningful classifier.

4.4.4 Overall Performance

In Tables 4.5-4.6 we have tabulated the overall classification results which are

presented in Tables 4.7-4.20. While in most cases there was a clear winner,

it should be noted that some of the decisions were very close. In fact, most of

the decisions were within experimental error of each other. These simulations

71



Non-Gaussian Simulation set
Table LVQ AH SOP

number wins wins wins
4.14 10 2 0
4.15 10 0 2
4.16 9 0 3
4.17 8 1 3
4.18 7 2 3
4.19 6 3 3
4.20 7 2 3

Total 1 57 [ 10 1  1

Table 4.6: Performance of LVQ vs adaptive histogram and second order parametric

show that LVQ offers a competitive alternative to adaptive histogram classification

and for non-Gaussian patterns, a superior alternative to second order parametric

classification.

In the Gaussian simulation set, the second order parametric generally outper-

formed both nonparametric classification techniques. This was expected since the

data was Gaussian and hence characterized by its mean and variance. However,

case 12 illustrated the problem with second order parametric classification when

the data is bimodal. In that case, both nonparametric classifiers did significantly

better than the second order parametric classifier.

4.4.5 Sensitivity to Initial Conditions

During the simulations we ran into a problem with sensitivity to initial conditions.

Recall from Chapter 3 that convergence in the LVQ algorithm is a local property.

Therefore, it is always possible for the vectors to settle in on a local minimum. This

phenomena occurred in case 12 of the Gaussian simulation set. Originally all of the

Voronoi vectors in the Gaussian simulation set were initialized the same. However,

we noticed that the performance for case 12 was not as good as expected. Upon

further investigation, we discovered that the LVQ algorithm had settled on a local

minimum. To understand this phenomena, let's consider case 12 with 7 Voronoi
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vectors initialized at [-3 -2 -1 0 1 2 3]. The pattern densities in case 12 were two

bimodal Gaussian densities. The first pattern was distributed N(0, 1)+ N(10, 1)

and the second was distributed !N(5, 1) + N(15, 1). Since none of the initial

conditions were greater than 5, the Voronoi vectors could not account for the two

probability masses at 10 and 15. This happened because the vector near 5 was

given decision 2 and hence was repelled by the mass located at 10. Likewise, the

mass at 15 was too weak to pull that Voronoi vector over the mass at 10. Therefore,

the whole interval [4.5, oo) was represented by one Voronoi vector. This resulted

in an unacceptably high error rate. To prevent this from happening, we adjusted

the initial conditions for case 12. The vectors were initialized to [0, 2, 4, 6, 8, 10,

12, 14].

In an application of LVQ to real data, the Voronoi vectors would be initialized

after analyzing the observation data, hence this problem would be avoided. It is

interesting to note that in the scalar case, a simple uniform partition of the obser-

vation space performs well. It is certainly the case that for vector observations, the

initialization process must be carefully done using one of the methods discussed in

Chapter 3.

4.5 Remarks

These simulations have demonstrated that (1) LVQ provides good detection per-

formance when the size of the observation set is small; (2) only a small number

of iterations through the LVQ algorithm is needed in order to obtain convergence;

(3) increasing the number of Voronoi vectors leads to better performance; (4)

that LVQ is relatively insensitive to the value of the adaptation parameter a and

(5) it compares favorably with other parametric and nonparametric classification

schemes.

The number of Voronoi vectors and their locations can be determined experi-

mentally. This can be accomplished by picking an initial value for the number of

Voronoi vectors k, completing the LVQ training, evaluating the resulting classifier

with new observation data, incrementing k and then repeating the whole process.

When the estimated error reaches a minimum, the resulting value of k can be used.
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In Chapter 3. we showed convergence to the optimal Bayesian cost as the

number of observations goes to infinity. The simulations in this chapter show that

even with a small number of observations the resulting detector performs quite

well. More analytical work needs to be done to investigate these phenomena.

4.6 Results of Simulations

Gaussian Example Bayesian Parametric Adaptive LVQ
20 observation points Optimal Model Histogram 3 points 5 points 7 points
Case I mean 0.6915 0.6625 0.6365 0.6571'. 0.6383 0.6386

std 0.0568 0.0691 0.0564:- 0.0662 0.0674
Case 2 mean 0.7775 0.7574 0.7217 0,7640 0.7340 0.7293

std 0.0244 0.0600 0.0346 0.0607 0.0634
Case 3 mean 0.8413 0.8319 0.8213 08286 0.8045 0.7934

std 0.0130 0.0374 0.,0247 0.0354 0.0344
Case 4 mean 0.8730 0.8566 0.8443 0.8352 0.8558 0.8479

std 0.0334 0.0391 0.0261 0.0390 0.0199
Case 5 mean 0.5987 0.5557 0.5352 0.5376 0.5405 0.5389

srd 0.0548 0.0524 0.0574 0.0516 0.0515
Case 6 mean 0.7510 0.7333 0.7005 0.7326 0.6934 0.6946

std 0.0295 0.0660 0.0325' 0.0572 0.0569
Case 7 mean 0.6613 0.6345 0.5640 0.6020 0.5817 0.5637

std 0.0365 0.0603 06.105 0.0528 0.0544

Case 8 mean 0.7500 0.7290 0.6954 0.7102-:1 0.6619 0.6355
std 0.0342 0.0651 0.0722: 0.0555 0.0487

Case 9 mean 0.8818 0.8675 0.7507 0.7895 0.7880 0.8212
std 0.0191 0.0797 0.0657 0.0524 0.0613

Case 10 mean 0.8587 0.8419 0.7720 0.7284 0.7643 0.7852
std 0.0161 0.0837 0.0491 0.0625 0.0642

Case 11 mean 0.6950 0.6722 0.6023 0.6478 0.6260 0.6068
std 0.0199 0.0695 0.04.95. 0.0540 0.0533

Case 12 mean 0.9907 0.5099 0.8727 0.7043 0.9766 0.9573
std 0.0094 0.0673 0.0387 0.0099 0.0282

Table 4.7: Gaussian simulation set with 20 observations
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Gaussian Example Bayesian Parametric Adaptive LVQ
50 observation points Optimal Model Histogram 3 points 5 points 7 points
Case 1 mean 0.6915 0.6862 0.6527 0 7-71 0.6709 0.6692

std 0.0108 0.0390 0.0172 0.0350 0.0382
Case 2 mean 0.7775 0.7700 0.7387 :)0.713Y: 0.7631 0.7595

std 0.0090 0.0405 0.0089 0.0256 0.0277
Case 3 mean 0.8413 0.8390 0.8196 0.8333 0.8236 0.8169

std 0.0033 0.0336 0O009 0.0271 0.0261
Case 4 mean 0.8730 0.8690 0.8475 0.8451 0.8552 0.8497

std 0.0059 0.0298 0.0234 0.0171 0.0234

Case 5 mean 0.5987 0.5813 0.5511 0.5637, 0.5622 0.5631
std 0.0318 0.0360 0,037- 0.0405 0.0388

Case 6 mean 0.7510 0.7450 0.7172 0.7410 0.7348 0.7363
std 0.0102 0.0346 0.117-' 0.0281 0.0271

Case 7 mean 0.6613 0.6512 0.6031 0.6307: 0.6122 0.6020
std 0.0103 0.0481 0,34g 0.0388 0.0394

Case 8 mean 0.7500 0.7456 0.6983 0.7480 0.7263 0.7099
std 0.0133 0.0403 M00200 0.0410 0.0409

Case 9 mean 0.8818 0.8761 0.8316 0.7859 0.7892 0.8611.

std 0.0063 0.0350 0.0362 0.0286 0.0315
Case 10 mean 0.8587 0.8536 0.8197 0.7366 0.7978 0.8110

std 0.0047 0.030 7 0.0293 0.0450 0.0266
Case 11 mean 0.6950 0.6855 0.6481 06617 0.6523 0.6465

std 0.0104 0.0380 0.0204 0.0425 0.0427
Case 12 mean 0.9907 0.5053 0.7858 0.6746 -,0.9820 0.9808

std 0.0032 0.0471 0.0357 0.0100 0.0086

Table 4.8: Gaussian simulation set with 50 observations
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Gaussian Example Bayesian Parametc Adaptive LVQ
100 observation points Optimal Model Histogram 3 points 5 points 7 points
Case 1 mean 0.6915 0.6888 0.6608 0.6808 0.6805 0.6787

std 0.0062 0.0291 0,0155 0.0208 0.0254
Case 2 mean 0.7775 0.7727 0.7584 0.7719 0.7680 0.7655

std 0.0068 0.0222 0,0078 0.0139 0.0155
Case 3 mean 0.8413 0.8399 0.8257 0842 0.8334 0.8293

std 0.0019 0.0218 1-0.09.3 0.0172 0.0185
Case 4 mean 0.8730 0.8714 0.8597 0.8571 0.8613: 0.8609

std 0.0021 0.0195 0.0130 0.0122. 0.0129
Case 5 mean 0.5987 0.5892 0.5575 04727 0.5693 0.5698

std 0.0254 0.0301 0,0330 0.0362 0.0351
Case 6 mean 0.7510 0.7482 0.7250 0.7419 0.7434 0.7441

std 0.0046 0.0280 0.0145 0.0168 0.0154
Case 7 mean 0.6613 0.6562 0.6364 0.6485 0.6356 0.6323

std 0.0057 0.0257 0.0230 0.0157 0.0219
Case 8 mean 0.7500 0.7494 0.7157 0.7500. 0.7446 0.7385

std 0.0049 0.0249 0.0199 0.0207
Case 9 mean 0.8818 0.8792 0.8508 0.7716 0.7775 :0.8508

std 0.0034 0.0230 0.0283 0.0261 0.0203
Case 10 mean 0.8587 0.8561 0.8367 0.7436 0.7996 0.8195

std 0.0028 0.0203 0.0203 0.0289 0.0254
Case 11 mean 0.6950 0.6914 0.6592 0.6676 0.6682 0.6704

std 0.0037 0.0238 0.0167 0.0246 0.0194
Case 12 mean 0.9907 0.5036 0.9407 0.6648 0.9862 0.9856

std 0.0007 0.0206 0.0322 0.0075 0.0047

Table 4.9: Gaussian simulation set with 100 obseruations
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Gaussian Example Bayesian Parametric Adaptive LVQ
200 observation points Optimal Model Histogram 3 points 5 points 7 points
Case I mean 0.6915 0.6906 0.6762 0.6870 0.6889 0.6879

std 0.0012 0.0159 0.0052 0.0057 0.0027
Case 2 mean 0.7775 0.7752 0.7651 07::720 0.7705 0.7692

std 0.0039 0.0178 0.0074 0.0068 0.0071
Case 3 mean 0.8413 0.8408 0.8325 0.8341 .0..8393: 0.8387

std 0.0007 0.0136 0.0060 0.0029 0.0039
Case 4 mean 0.8730 0.8722 0.8658 0.8581 0.8654 0.8665

std 0.0010 0.0076 0.0107 0.0072 0.0089
Case 5 mean 0.5987 0.5957 0.5684 0.5858 0.5828 0.5824

std 0.0062 0.0219 0.0166: 0.0189 0.0190
Case 6 mean 0.7510 0.7495 0.7355 0.7454 0.7484 0.7472

std 0.0023 0.0171 0.0079 0.0069 0.0095
Case 7 mean 0.6613 0.6589 0.6390 .0.6554. 0.6411 0.6441

std 0.0030 0.0182 0.0094 0.0146 0.0139
Case 8 mean 0.7500 0.7500 0.7286 0.7500! 0.7500 0.7478

std 0.0000 0.0195 0.0000 0.0108
Case 9 mean 0.8818 0.8808 0.8659 0.7737 0.7749 0.8424

std 0.0008 00114 0.0181 0.0209 e.0148
Case 10 mean 0.8587 0.8575 0.8452 0.7492 0.7871 0.8194

std 0.0016 .01:19 0.0076 0.0231 0.0171
Case 11 mean 0.6950 0.5000 0.6696 0.6679 0.6789 0.6799

std 0.0000 0.0185 0.0145 0.0147 0.0107
Case 12 mean 0.9907 0.5035 0.9024 0.6594 0.9889 0.9870

std 0.0006 0.0178 0.0314 160024:1 0.0021

Table 4.10: Gaussian simulation set with 200 observations
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Gaussian Example Bayesian Parametric Adaptive LVQ
10 Iterations of LVQ Optimal Model Histogram 0.05 0.10 0.25
Case I mean 0.6915 0.6895 0.6653 0.6768 0.6780 0.6780

std 0.0028 0.0281 0.0357 0.0306 0.0295
Case 2 mean 0.7775 0.7722 0.7557 0.7705: 0.7691 0.7681

std 0.0079 0.0267 00 83 0.0128 0.0120
Case 3 meani 0.8413 0.8404 0.8298 0.8355 0.8361 0.8357

std 0.0013 0.0167 0.0130 0.0123 0.0134
Case 4 mean 0.8730 0.8716 0.8615 0.8607 0.8625 0.8631

std 0.0017 0.0195 0.0106 0.0090 0.0102
Case 5 mean 0.5987 0.5881 0.5602 0.5700 0.5701 0.5742

std 0.0269 0.0255 0.0285 0.0314 0.0312
Case 6 mean 0.7510 0.7483 0.7294 0.7445 047459 0.7454

std 1 0.0053 0.0239 0.0174 0.0121 0.0120
Case 7 mean 0.6613 0.6568 0.6327 0.6261 0.6292 0.6282

std 0.0060 .0299 0.0204 0.0193 0.0241
Case 8 mean 0.7500 0.7497 0.7151 0.7441 0.7465 0.7463

std 0.0027 0.0285 0.0219 0.0177 0.0186
Case 9 mean 0.8818 0.8798 0.8490 0.7834 0.7826 0.7947

std 0.0020 0.021.1 0.0205 0.0227 0.0288
Case 10 mean 0.8587 0.8563 ..0.8383 0.8077 0.7908 0.7779

std 0.0027 0.0179 0.0405 0.0354 0.0278
Case 1l mean 0.6950 0.6908 0.6586 0.6689 0.6733 0.6745:

std 0.0040 0.0259 0.0214 0.0190 0.0193
Case 12 mean 0.9907 0.5035 0.9374 0.98711 0.9870 0.9867

std 0.0005 0.0179 0.0017 0.0017 0.0025

Table 4.11: Gaussian simulation set with 10 iterations of LVQ
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Gaussian Example Bayesian Parametric Adaptive LVQ
20 Iterations of LVQ Optimal Model H istogram 0.05 0.10 0.25
Case I mean 0.6915 0.6894 0.6669 0.6832: 0.6826 0.6810

std 0.0048 0.0255 0.0159 0.0141 0.0191
Case 2 mean 0.7775 0.7726 0.7587 0.7675 0.7666 0.7668

std 0.0074 0.0227 0,0160 0.0173 0.0149
Case 3 mean 0.8413 0.8401 0.8283 0.8361 0.8367 0.8358

std 0.0021 0.0160 0.0113 0.0097 0.0099
Case 4 mean 0.8730 0.8716 0.8638 0.8605 0.8619 0.8627

std 1 0.0020 -0.0152 0.0137 0.0124 0.0116
Case 5 mean 0.5987 0.5909 0.5587 0.5721 0.5723 0.5722

std 0.0164 0.0297 0.0279 0.0294 0.0329
Case 6 mean 0.7510 0.7481 0.7231 0.7422 0.7444 0.7423

std 0.0057 0.0276 0.0181 0.0142 0.0151
Case 7 mean 0.6613 0.6564 0.6339 0.6303 0.6320 0.6348

std 0.0101 0.0278 0.0194 0.0205 0.02.17
Case 8 mean 0.7500 0.7489 0.7169 0.7428 0.7447 0.7455

sid 0.0061 0.0253 0.0237 0.0196 0.0199
Case 9 mean 0.8818 0.8796 0.8526 0.7802 0.7792 0.7883

std 0.0020 0.0262:... 0.0223 0.0252 0.0318
Case 10 mean 0.8587 0.8557 0.8342 0.8014 0.7928 0.7767

std 0.0029 .0243 0.0338 0.0318 0.0269
Case 11 mean 0.6950 0.6912 0.6592 0.6706 0.6735 0.6741

std 0.0046 0.0250 0.0230 0.0217 0.0206
Case 12 mean 0.9907 0.5035 0.9384 0.9872 0.9869 0.9867

std 1_ 1_0.0006 0.0153 0.0017 0.0018 0.0017

Table 4.12: Gaussian simulation set with 20 iterations of LVQ
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Gaussian Example Bayesian Parametric Adaptive LVQ
40 Iterations of LVQ Optimal Model Histogram 0.05 0.10 0.25
Case I mean 0.6915 0.6895 0.6659 0.68W3 0.6821 0.6800

std 0.0041 0.0304 0.0212. 0.0222 0.0224
Case 2 mean 0.7775 0.7719 0.7588 0.7679. 0.7670 0.7671

std 0.0078 0.0232 04)144 0.0155 0.0152
Case 3 mean 0.8413 0.8398 0.8257 0.8322 0.8332 0.8331

std 0.0022 0.0225 0.0187 0.01 73 0.0167
Case 4 mean 0.8730 0.8713 0.8585 0.8618 0.8614 0.8631.

std 0.0021 0.0188 0.0109 0.0123 0.0104
Case 5 mean 0.5987 0.5913 0.5618 0.5768 0.5766 0.5781

std 0.0143 0.0266 0.0236 0.0239 0.0247
Case 6 mean 0.7510 0.7474 0.7179 0.7409 0 7424 0.7404

std 0.0056 0.0325 0.0198 0.0180 0.0183
Case 7 mean 0.6613 0.6573 .:'.0.6346 0.6312 0.6308 0.6314

std 0.0051 .. s.OZ71 0.0190 0.0239 0.0244
Case 8 mean 0.7500 0.7494 0.7170 0.7417 0.7441 01.7460

std 0.0045 0.0249 0.0272 0.0240 0.0201
Case 9 mean 0.8818 0.8790 .8491 : 0.7785 0.7798 0.7906

std 0.0038 .7 . 0.0224 0.0233 0.0280
Case 10 mean 0.8587 0.7500 0.8382 0.7937 0.7838 0.7722

std 0.0000 ." 0.0304 0.0312 0.0301
Case 11 mean 0.6950 0.6908 0.6605 0.6684 0.6705 0,46719

std 0.0051 0.0250 0.0291 0.0247 0.0237
Case 12 mean 0.9907 0.5035 0.9346 0.9870 0.9869 0,9870

std 0.0006 0.0163 0.0016 0.0016 0,0015

Table 4.13: Gaussian simulation set with (0 iterations of LVQ
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Rayleigh / Lognormal Bayesian Parametric Adaptive LVQ
20 observation points Optimal Model Histogram 3 points 5 points 7 points

Case I mean 0.9711 0.9608 0.9374 0.667' 0.9548 0.9559
std 0.0162 0.0357 1I-l 0.0281 0.0280

Case 2 mean 0.9806 0.9692 0.9509 0973i 0.9614 0.9629
std 0.0168 0.0340 0U.0 1 0.0319 0.0298

Case 3 mean 0.5810 0.5141 0.5229 0.5050 0.5142 0.5130
std 0.0320 0.0329 0.0136 0.0437 0.0452

Case 4 mean 0.7512 0.7158 0.6894 07341 0.7017 0.6984
std 0.0563 0.0587 0.01741 0.0405 0.0424

Case 5 mean 0.6944 0.6470 0.6636 0.6134 :).6826 0.6760
std 0.0747 0.0630 0.0764 0.0723 0.0642

Case 6 mean 0.7585 0.7039 0.7142 01.7221: 0.7057 0.6877
std 0.0865 0.0304 00266. 0.0357 0.0281

Case 7 mean 0.7793 0.6756 0.7089 0.7162 0.7176 0.72511w
std 0.0848 0.0516 0.0525 0.0535 0.0550-

Case 8 mean 0.7848 0.7183 0.7280 0.7526 0.7178 0.7158
std 0.0845 0.0376 0.0309 0.0463 0.0450

Case 9 mean 0.8701 0.6648 L8488. 0.8559 0.8370 0.8396
std 0.1648 0.U414 0.0100 0.0593 0.0571

Case 10 mean 0.8820 0.7670 0.8553 0.7707 0.8561 0.8523
std 0.0417 0.0433 0.0302 0351: 0.0411

Case 11 mean 0.7940 0.6690 0.7577 .067: 0.7578 0.7584
std 0.1289 0.0538 0.03 0.0491 0.0480

Case 12 mean 0.8451 0.7532 0.8026 0.7452 0.8081 0.8085
std 0.0609 0.0454 0.0213 0.0546 0.0545

Table 4.14: Non-Gaussian simulation set with 20 observations
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Rayleigh / Lognormal Bayesian Parametric Adaptive LVQ
50 observation points Optimal Model Histogram 3 points 5 points 7 points

Case I mean 0.9711 .0.966-9 0.9582 0.9554 0.9633 0.9642
std _ _ 0.0064 0.0141 0.0075 0.0115 0.0038

Case 2 mean 0.9806 0.9742 0.9412 0.9792 0.9694 0.9707
std ___________ .087 0.0240 0.0058 0.0077 0.0099

Case 3 mean 0.5810 0.5231 0.5280 0.5073 0.5336 0.5329
std 0.0289 0.0293 0.0129 0.0325 0.0317

Case 4 mean 0.7512 0.7412 0.7116 0.7416 0.7283 0.7280
std 0.0206 0.0390 0.0140;::' 0.0264 0.0285

Case 5 mean 0.6944 0.6511 0.6926 0.6697 0.7106 0.7039
std 0.0684 0.0373 0.0678 0.0277 0.0275

Case 6 mean 0.7585 0.7123 0.7231 0:7392 0.7345 0.7187
std 0.0932 0.0303 01t5g: 0.0252 0.0244

Case 7 mean 0.7793 0.6779 0.7420 0.7314 0.7211 0,7462-
std 0.0936 0.0368 0.0401 0.0557 0.0319.

Case 8 mean 0.7848 0.7212 0.7465 0.7562 0.7509 0.7584.-
std 0.0781 0.0258 0.0181 0.0276 0.0265

Case 9 mean 0.8701 0.6981 0.8529 0.8625 0.8570 0.8590
std 0.1601 0.0333 0.0061 0.0247 0.0225

Case 10 mean 0.8820 0.7533 0.8591 0.7937 0.8707 0.8704
std 0.0173 0.0216 0.0458 030135 0.0133

Case 11 mean 0.7940 0.7208 0.7713 0.7854 0.7743 0.7722
std 0.1049 0.0297 0.0114 0.0211 0.0209

Case 12 mean 0.8451 0.7650 0.8271 0.7510 0.8371 0.8364
std 0.0629 0.0252 0.0135 0.0257 0.0230

Table 4.15: Non-Gaussian simulation set with 50 observations
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Rayleigh / Lognormal rBayesian Parametric Adaptive LVQ
100 observation points Optimal Model Histogram 3 points 5 points 7 points
Case I mean 0.9711 0.9686 0.9586 0.9386 0.9684 0.9646

std ,_____ 0.0033 0.0118 0.0084 0.0105 0.0038
Case 2 mean 0.9806 .97ii68ii 0.9559 0.9763 0.9663 0.9746

std _______ OA)033 0.0159 0.0029 0.0062 0.0075
Case 3 mean 0.5810 0.5259 0.5323 0.5075 0.5417 0.5419

std 0.0287 0.0264 0.0133 0.0325 0.0323
Case 4 mean 0.7512 ..0.7.1464:.::.. 0.7208 0.7456 0.7399 0.7380

std ______0.0.139 0.0326 0.0104 0.0173 0.0195
Case 5 mean 0.6944 0.6377 0.7099 0.6984 0.720! 0.7210

std 0.0735 0.0215 0.0442 0.0164 0.0161
Case 6 mean 0.7585 0.7255 0.7357 0.7427 0.7440 0.7378

std 0.0628 0.0239 0.0155 0.01 86 0.0175
Case 7 mean 0.7793 0.6590 0.7567 0.7311 0.7100 0.76267

std 0.0950 0.0207 0.0650 0.0825 0.0140 1
Case 8 mean 0.7848 0.7154 0.7566 0.7528 0.7530 0.7623

std 0.0953 0.0245 0.0187 0.0259 0.0226:
Case 9 mean 0.8701 0.6986 0.8601 0.8605 0.8653 0.8656

std 0.1560 0.0144 0.0074 0.0077 0.0100
Case 10 mean 0.8820 0.7530 0.8740 0.7998 0.8745 0.8749

std 0.0163 0.0185 0.0489 0.0143 0.01"7
Case 11 mean 0.7940 0.7505 0.7781 0.7874' 0.7788 0.7794

std 0.0782 0.0231 0 .0O6 0.0158 0.0107
Case 12 mean 0.8451 0.7765 0.8334 , 0.7500 "08433 0.8431

std 0.0397 0.0160 0.0000 264 0.0025

Table 4.16: Non-Gaussian simulation set with 100 observations
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Rayleigh / Lognormal Bayesian Parameti Adaptive LVQ
200 observation points Optimal Model Histogram 3 points 5 points' 7 poin:s
Case I mean 0.9711 W.9699: 0.9513 0.9295 0.9587 0.9650

std ______ 0 i0015 0.0127 0.0095 0.0098 0.0052
Case 2 mean 0.9806 0.9771 0.9572 0.9676 0.9656 0.9768

std _iX)28 0.0107 0.0055 0.0082 0.0061
Case 3 mean 0.5810 0.5249 0.5370 0.5095 0.5538 0.5546

std 0.0236 0.0183 0.0070 0.0230 06.0200
Case 4 mean 0.7512 4L7500 0.7379 0.7476 0.7469 0.7465

std 0:0.000 0.0179 0.0037 0.0057 0.0055
Case 5 mean 0.6944 0.6237 0.7105 0.6536 0.7180 0.7300

std 0.0653 0.0174 0.0869 0.0108 0.0087
Case 6 mean 0.7585 0.7227 0.7460 0.7456 0.7478 0.7462

std 0.0483 0.0111 0.0125 0.0130 0.0136
Case 7 mean 0.7793 0.6553 0.7531 0.7478 0.7029 0.7677

std 0.0879 0.0146 0.0277 0.0925 0.0,123
Case 8 mean 0.7848 0.7125 .0. :7i47715 0.7481 0.7566 0.7692

std 0.1048 -0.01. -2.X :. 0.0121 0.0162 0.0110
Case 9 mean 0.8701 0.6988 0.8632 0.8598 0.8639 0.8663.

std 0.1487 0.0108 0.0067 0.0089 0.0091
Case 10 mean 0.8820 0.7503 0.8756 0.7947 0.8782 0.8780

std 0.0027 0.0088 0.0499 0.0087 0.0085
Case 11 mean 0.7940 0.7599 0.7859 0.7891: 0.7839 0.7839

std 0.0643 0.0133 0.0043 0.0134 0.0136
Case 12 mean 0.8451 0.7830 0.8396 0.7500 0.8421 0.8422

std 0.0386 0.0100 0.0000 0.0032 0.0033

Table 4.17: Non-Gausszan simulation set with 200 observations
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Rayleigh / Lognormal Bayesian Parametric Adaptive LVQ
10 Iterations of LVQ Optimal Model istogram 0.05 0.10 0.25
Case I mean 0.9711 03683 0.9559 0.9668 0.9599 0.9470

std _______ 0.0036 0.0140 0.0134 0.0104 0.0173
Case 2 mean 0.9806 10359 0.9567 0.9666 0.9664 0.9672

std ______ 0 4 0.0183 0.0048 0.0092 0.0104
Case 3 mean 0.5810 0.5261 0.5362 045.4SS: 0.5425 0.5434

std 0.0287 0.0218 ,001- 0.0306 0.0292
Case 4 mean 0.7512 03.449 i: 0.7248 0.7388 0.7393 0.7379

std __ :6____ .02a5 0.0310 0.0155 0.0144 0.0161
Case 5 mean 0.6944 0.6453 0.7056 0. 71:54 0.7131 0.7014

std 0.0640 0.0271 0.0278 0.0307 0.0513
Case 6 mean 0.7585 0.7231 0.7338 0.7413 0.7404 0.7388

std 0.0601 0.0259 0.021 3 0.0196 0.0184
Case 7 mean 0.7793 0.6624 -07555 0.7161 0.7048 0.6909

std 0.0887 0.0212. 1 0.0837 0.0950 0.1015
Case 8 mean 0.7848 0.7182 04,.S7566 0.7537 0.7465 0.7528

std 0.0925 .0.0226 0.0212 0.0279 0.0154
Case 9 mean 0.8701 0.6876 0.8570 0.8636 0.8623 0.8609

std 0.1532 0.0185 01)1236 0.0104 0.0107
Case 10 mean 0.8820 0.7535 0.8751 0.8760 0.8770 0.8754

std 0.0180 0.0123 0.0121 0.0109 0.0101
Case 11 mean 0.7940 0.7346 0.7795 0.7783 0.7794 0.7800

std 0.0937 0.0203 0.0169 0.0177 0.0319
Case 12 mean 0.8451 0.7703 0.8324 0.8411 0.8387 0.8378

std 0.0530 0.0134 0.0165 0.0142

Table 4.18: Non-Gaussian simulation set with 10 iterations of LVQ

85



Rayleigh / Lognormal Bayesian Parametric Adaptive LVQ
20 Iterations of LVQ Optimal Model Histogram 0.05 0.10 0.25
Case I mean 0.9711 .9685 0.9561 0.9658 0.9543 0.9446

std ____003 0.0139 0.0088 0.0113 0.0164
Case 2 mean 0.9806 .0.9..759 0.9567 0.9655 0.9683 0.9670

std _____ .04 0.0183 0.0065 0.0106 0.0102
Case 3 mean 0.5810 0.5261 0.5362 03452. 0.5434 0.5427

std 0.0287 0.0218 0.0277 0.0303 0.0299
Case 4 mean 0.7512 03-449: 0.7248 0.7387 0.7386 0.7384

std _ _0.0255. 0.0310 0.0157 0.0158 0.0155
Case 5 mean 0.6944 0.6570 0.7064 0.7197 0.7167 0.7088

std 0.0620 0.0231 0,0152 0.0152 0.0352
Case 6 mean 0.7585 0.7266 0.7402 0.7418 0.7381 0.7404

std 0.0574 0.0195 00",6201. 0.0213 0.0175
Case 7 mean 0.7793 0.6659 04753: 0.6970 0.6920 0.6774

std 0.0908 ..0.0201 0.0970 0.1010 0.1092
Case 8 mean 0.7848 0.7244 .O7566 0.7511 0.7494 0.7499

std 0.0972 0.0219 0.0240 0.0214 0.0189
Case 9 mean 0.8701 0.7026 0.8572 0.8638 0.8624 0,8601

std 0.1529 0.0156 0 0100 0.0102 0.0128
Case 10 mean 0.8820 0.7563 0.8756. 0.8733 0.8726 0.8722

std 0.0256 0.01:1 9 0.0156 0.0157 0.0131
Case 11 mean 0.7940 0.7430 0.7779 0.7793 0.7815 0,:7826

std 0.0867 0.0226 0.0130 0.0122 0.0113:
Case 12 mean 0.8451 0.7831 0.8304 0.83891 0.8374 0.8370

std 0.0407 0.0171 00239 0.0241 0.0171

Table 4.19: Non-Gaussian simulation set with 20 iterations of LVQ
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Rayleigh / LognorMai Bayesian Paramethc Adaptive - LVQ -

40 Iterations of LVQ Otimal Model Histoga 0.05 0.10 0.25
Case 1 mean 0.9711 0.66 0.9569 0.9594 0.9531 0.9479

std 001 0.0134 0.0087 0.0104 0.0150
Case 2 mean 0.9806 0.76 S0967 0.9680 0.9673 0.9649

std 006' 0.0177 0.0086 0.0108 0.0126
Case 3 mean 0.5810 0.5276 0.5329 0.5412 0.43 0.5405

std ____ 0.0274 0.0206 0.0321 .012' 0.0293
Case 4 mean 0.75 12 0.49 0.7223 0.7396 0.7402 0.7406

std ____ .13 0.0318 0.0183 0.0154 0.0168
Case 5 mean 0.6944 0.6559 0.7067 0.719S 0.7144 0.70699

std ____ 0.0628 0.0221 0.0135 ... 0.0185 0.0404
Case 6 mean 0.7585 0.7224 0.7368 0.7381 0.7392 0.7418.

std 0.0681 0.0204 0.0226 0.0207 0.0:197'
Case 7 mean 0.7793 10.666 O78 0.7088 0.6998 0.6867

std 0.0874 0.21 0.0835 0.0902 0.1036
Case 8 mean 0.7848 0.7314 0.58 0.7515 0.7517 0.7530

std ____0.0735 0.24 0.0217 0.0201 0.0185
Case 9 mean 0.870 1 0.6504 0.8607 118636: 0.8625 0.8600

std ____0.1603 0.0116 0.150.0112 0.0126
Case 10 mean 0.8820 0.7517 0.8723 0.8721 0.79 0.8742

std ____ 0.0103 0.10 0.0165 :.1W6 000
Case 11 mean 0.7940 0.7407 0.7771 0.7804 0.7817 0.7835:.

std ____0.0902 0.0219 0.0102 0.0135 00126
Case 12 mean 0.8451 0.7767 0.8341 0426 0.*8412 0.8399

std ____0.0419 0.0120 048 0.0075 0.0065

Table 4.20: Non-Gaussian simulation set with 40 iterations of LVQ
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Chapter 5

Discussion

In this dissertation we studied the properties of Kohonen's LVQ.

We have shown that the adaptation rule of LVQ was a stochastic approximation

algorithm and that under the appropriate conditions on the adaptation parameter,

the pattern densities and the initial conditions, that the Voronoi vectors converged

to stable equilibria of an associated ODE. We presented a modification to the algo-

rithm, which we argued results in convergence for a wider class of initial conditions.

We showed that LVQ was a general histogram classifier and that its risk converged

to the optimal risk as the appropriate parameters went to infinity with the number

of past observations. In addition, we presented several method3 for initializing the

Voronoi vectors.

Next, we demonstrated through simulations that LVQ performed well compared

to parametric and nonparametric classifiers. We showed how the classification error

was affected by changing the values of the adaptation rate, the number of Voronoi

vectors, the size of the past observation data set, and the number of iterations.

In this chapter we discuss future directions of this work. In Section 5.1 we

discuss some preliminary ideas relating to the implementation of LVQ using neural

network technology. In Section 5.2, we discuss the use of ergodic observations of

the patterns as input to the LVQ algorithm. In Section 5.3, we discuss the use of

LVQ to classify two different time series. Finally, in Section 5.4 we discuss some

additional issues associated with LVQ which require further investigation.
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Figure 5.1: Architecture for implementing LVQ

5.1 Implementation

The LVQ algorithm originated in Kohonen's work on self-organizing systems so it

is only appropriate that it can be implemented using neural network technology.

The algorithm consists of a learning and a classification phase. In the learning

phase, the Voronoi vectors are adjusted using the past observations. In the clas-

sification phase a new observation is classified using the Voronoi vectors. It is the

learning phase which is the most computationally intensive since it involves repeat-

edly taking observations from the observation data set, finding the closest Voronoi

vector and updating that vector according to the update rule (see Section 3.1).

Recent work of Carver Meade on analog VLSI has led to the development of

an order k winner-take-all network (Lazzaro et al. [1989]). This network computes

the maximum among its k inputs. A k winner-take-all network is characterized by

the fact that the only nonzero output is the one corresponding to the maximum

input. A key feature of this network is its analog implementation and hence com-
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putes almost instantaneously. Working chips with 170 input networks have been

fabricated (Lazzaro et al. [1989]).

These winner-take-all (WTA) chips can be used in LVQ's learning phase to

find the closest Voronoi vector. The input to the network is minus the distance

between the observation and the Voronoi vectors plus a bias. The output of the

network is used directly in the update rule fcr LVQ since it indictcs whetlier the

observation falls in a particular Voronoi cell.

The implementation of the distance function calculation and the update of the

Voronoi vectors need more investigation; however one of the benefits of LVQ is

that it only needs local connections and local feedback. This greatly simplifies

its implementation as compared to classical neural networks which are massively

connected, and suggests that a simple design for the LVQ processor is possible. A

block diagram for one such design is depicted in Figure 5.1. During the learning

phase, the value of the current observation and its decision are broadcast to all

of the processors. Each processor computes the distance between the observation

and its Voronoi vector and output minus this value to the winner-take-all network.

The output of the winner-take-all network is then fed back to each processor for

use in the update equation for the Voronoi vectors. Since the output of the winner-

take-all network contains only one nonzero entry, only one of the Voronoi vectors

is modified. The learning is continued in this way for several passes through the

observation data until the Voronoi vectors converge.

During the classification phase, an observation is broadcast to all of the pro-

cessors and the closest Voronoi vector is found. The output is the decision of the

closest Voronoi vector.

Several questions arise: How should the Voronoi vectors' decisions and locations

be stored? Should the update calculations be performed using digital or analog

technology? If digital, how many Voronoi vectors should be assigned to each

processor? What type of arithmetic should be used? If analog, how should the

discrete nature of the update be handled? How can the modified LVQ algorithm

be implemented? What is the best way to implement the majority vote correction?
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5.2 Ergodic Input

In Chapter 2, we presented the results of Benveniste et. al. (1987) on conver-

gence of the stochastic approximation algorithm. These results provide general

convergence theorems which allowed observations from stationary ergodic Markov

processes. Therefore, the results in Chapter 3 carry through for these more general

observations provided the hypotheses of the convergence theorems are satisfied. In

the case of stationary ergodic Markov processes, the invariant measures of the

Markov processes play the role of p1(x) and p 2 (x).

5.3 Time Series Data

LVQ can be used to discriminate between two different time series. Suppose that

several independent observations of two time series are available. Let {xl(t, n)},=1

and {x2(t,n)} _, represent the sets of signals from pattern 1 and pattern 2,

respectively. Suppose that the signals are sampled at times to,... ,tn and let

XI(n) = [z1(to, n), ... ,xl(t, n)] and X 2 (n) = fX2(to, n),. . ., X2(t,, n)J. By train-

ing LVQ using {X1(n)} and {X2(n)}, the resulting network can perform classifi-

cation on the new signal X = [x(tO),... ,x(tm)]. This technique allows LVQ to

classify time series.

5.4 Further Issues

There are several issues that were raised in Chapter 3 that need further investiga-

tion. More work needs to be done to (1) show that the majority vote algorithm

does indeed improve the convergence; (2) demonstrate the effects of choosing other

distance functions p(8, x) and investigate whether an optimal one exists; (3) give

analytical results which predict the behavior of LVQ when the sample size is small

and the number of Voronoi vectors is small; (4) determine the optimal number of

Voronoi vectors given an observation set; and (5) determine how the number of

Voronoi vectors relates to the pattern variances.
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